
PL/SQL & SQL
Coding Guidelines

Document Version 1.0
© 2020 Insum Solutions

2

6
6
6
7
7

7

8
8
8
8
9

10

10
10
11
12
12
12
12
13
13
13
13
13
14
14
14
14
14
15
16
16
16

18
18
18
18
18
19

20
20
20
21
21
21
21

23
23
23
24
26
27
29
30

Table of Contents

Table of Contents

Introduction to the Insum PL/SQL and SQL Coding Guidelines
Why are standards important
License

Trademarks
Disclaimer

Revision History

Document Conventions
Scope
SQALE

SQALE characteristics and subcharacteristics
Severity of the rule
Keywords used

General Guidelines
Naming Conventions for PL/SQL
Database Object Naming Conventions

Collection Type
Column
DML / Instead of Trigger
Foreign Key Constraint
Function
Index
Object Type
Package
Primary Key Constraint
Procedure
Sequence
Synonym
System Trigger
Table
Surrogate Key Columns
Temporary Table (Global Temporary Table)
Unique Key Constraint
View

Coding Style
General Style

Formatting
Rules
Example
Package Version Function

Comments Style
Commenting Goals
The JavaDoc Template
Commenting Tags
Generated Documentation
Commenting Conventions
Code Instrumentation

Language Usage
General

G-1010: Try to label your sub blocks.
G-1020: Have a matching loop or block label.
G-1030: Avoid defining variables that are not used.
G-1040: Always avoid dead code.
G-1050: Avoid using literals in your code.
G-1060: Avoid storing ROWIDs or UROWIDs in database tables.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 2 of 138

31

32
32
32
33
34
35
36
37
38
39
40
41
42
43
44
45
45
46
47
48
49
49
50
50

51
51
51
52
54
55
56
57
58
59
60
61
62
62

63
63
63
64
66
67
69
69
70
71
72
73
73
75
77
78
79
80
81
83
84
86
87
88

89
89
90
91
93

G-1070: Avoid nesting comment blocks.

Variables & Types
General

G-2110: Try to use anchored declarations for variables, constants and types.
G-2120: Try to have a single location to define your types.
G-2130: Try to use subtypes for constructs used often in your code.
G-2140: Never initialize variables with NULL.
G-2150: Never use comparisons with NULL values, use IS [NOT] NULL.
G-2160: Avoid initializing variables using functions in the declaration section.
G-2170: Never overload variables.
G-2180: Never use quoted identifiers.
G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.
G-2190: Avoid using ROWID or UROWID.

Numeric Data Types
G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.
G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.

Character Data Types
G-2310: Avoid using CHAR data type.
G-2320: Avoid using VARCHAR data type.
G-2330: Never use zero-length strings to substitute NULL.
G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).

Boolean Data Types
G-2410: Try to use boolean data type for values with dual meaning.

Large Objects
G-2510: Avoid using the LONG and LONG RAW data types.

DML & SQL
General

G-3110: Always specify the target columns when coding an insert statement.
G-3120: Always use table aliases when your SQL statement involves more than one source.
G-3130: Try to use ANSI SQL-92 join syntax.
G-3140: Try to use anchored records as targets for your cursors.
G-3150: Try to use identity columns for surrogate keys.
G-3160: Avoid visible virtual columns.
G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store NULL values.
G-3180: Always specify column names instead of positional references in ORDER BY clauses.
G-3190: Avoid using NATURAL JOIN.
G-3200: Avoid using an ON clause when a USING clause will work.

Bulk Operations
G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement for more than 4 times.

Control Structures
CURSOR

G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.
G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.
G-4130: Always close locally opened cursors.
G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.

CASE / IF / DECODE / NVL / NVL2 / COALESCE
G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.
G-4220: Try to use CASE rather than DECODE.
G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a SELECT statement.
G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a SELECT statement.

Flow Control
G-4310: Never use GOTO statements in your code.
G-4320: Always label your loops.
G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk operations.
G-4340: Always use a NUMERIC FOR loop to process a dense array.
G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.
G-4360: Always use a WHILE loop to process a loose array.
G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.
G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.
G-4380 Try to label your EXIT WHEN statements.
G-4385: Never use a cursor for loop to check whether a cursor returns data.
G-4390: Avoid use of unreferenced FOR loop indexes.
G-4395: Avoid hard-coded upper or lower bound values with FOR loops.

Exception Handling
G-5010: Always use an error/logging framework for your application.
G-5020: Never handle unnamed exceptions using the error number.
G-5030: Never assign predefined exception names to user defined exceptions.
G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other specific handlers.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 3 of 138

94
95
96

97
97
99

100
100
100
101
102
104
105
106
106
107
109
111
113
114
114
115
116
116
117
118
119
120
121
122
122
123
124
124
126
127
128
128

129
129
129
130
131
131
132
132
134
134
136
136

137

G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded 20nnn error number or hard-coded message.
G-5060: Avoid unhandled exceptions.
G-5070: Avoid using Oracle predefined exceptions.

Dynamic SQL
G-6010: Always use a character variable to execute dynamic SQL.
G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML statements rather than the USING clause.

Stored Objects
General

G-7110: Try to use named notation when calling program units.
G-7120 Always add the name of the program unit to its end keyword.
G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program unit.
G-7140: Always ensure that locally defined procedures or functions are referenced.
G-7150: Try to remove unused parameters.

Packages
G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same context.
G-7220: Always use forward declaration for private functions and procedures.
G-7230: Avoid declaring global variables public.
G-7240: Avoid using an IN OUT parameter as IN or OUT only.
G-7250: Always use NOCOPY when appropriate

Procedures
G-7310: Avoid standalone procedures – put your procedures in packages.
G-7320: Avoid using RETURN statements in a PROCEDURE.

Functions
G-7410: Avoid standalone functions – put your functions in packages.
G-7420: Always make the RETURN statement the last statement of your function.
G-7430: Try to use no more than one RETURN statement within a function.
G-7440: Never use OUT parameters to return values from a function.
G-7450: Never return a NULL value from a BOOLEAN function.
G-7460: Try to define your packaged/standalone function deterministic if appropriate.

Oracle Supplied Packages
G-7510: Always prefix ORACLE supplied packages with owner schema name.

Object Types
Triggers

G-7710: Avoid cascading triggers.
G-7720: Avoid triggers for business logic
G-7730: If using triggers, use compound triggers

Sequences
G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).

Patterns
Checking the Number of Rows

G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.
G-8120: Never check existence of a row to decide whether to create it or not.

Access objects of foreign application schemas
G-8210: Always use synonyms when accessing objects of another application schema.

Validating input parameter size
G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration section of program unit.

Ensure single execution at a time of a program unit
G-8410: Always use application locks to ensure a program unit is only running once at a given time.

Use dbms_application_info package to follow progress of a process
G-8510: Always use dbms_application_info to track program process transiently.

Code Reviews

PL/SQL & SQL Coding Guidelines Version 1.0 Page 4 of 138

PL/SQL & SQL Coding Guidelines Version 1.0 Page 5 of 138

Introduction to the Insum PL/SQL and SQL Coding Guidelines

SQL and PL/SQL code is fundamentally some of the most important code that Insum writes for our customers and
partners. The difference between SQL and PL/SQL that performs well and that doesn't can be the difference between a
successful system (our customers and partners) and a huge disappointment (Healthcare.gov's rollout for example, not
done by Insum...).

For a PDF version of these guidelines use []

In 2019, Rich Soule of Insum forked these guidelines from the Trivadis guidelines [https://trivadis.github.io/plsql-and-sql-
coding-guidelines/] and changed most of the rules to comply with Insum coding standards and added many new
guidelines. New rules were also suggested in the Trivadis Issues, and while many were adopted, some (and some we
consider very important) were not.

Originally, Trivadis published their guidelines for PL/SQL & SQL in 2009 in the context of the DOAG conference in
Nuremberg. Since then these guidelines have been continuously extended and improved. Now they are managed as a set
of markdown files. This makes the the guidelines more adaptable for individual application needs and simplifies the
continous improvement.

We all stand in the shoulders of giants. Many people have participated in the creation and refinement of these guidelines.
Without the efforts from Roger Troller, Jörn Kulessa, Daniela Reiner, Richard Bushnell, Andreas Flubacher, Thomas Mauch,
and Philipp Salvisberg, and, more recently, many folks from the Insum Team, these guidelines wouldn't be what they are
today.

Why are standards important

For a machine executing a program, code formatting is of no importance. However, for the human eye, well-formatted
code is much easier to read. Modern tools can help to implement format and coding rules.

Implementing formatting and coding standards has the following advantages for PL/SQL development:

Well-formatted code is easier to read, analyze and maintain (not only for the author but also for other developers).

The developers do not have to define their own guidelines - it is already defined.

The code has a structure that makes it easier to avoid making errors.

The code is more efficient concerning performance and organization of the whole application.

The code is more modular and thus easier to use for other applications.

This document only defines possible standards. These standards are not written in stone, but are meant as guidelines. If
standards already exist, and they are different from those in this document, it makes no sense to change them unless the
existing standards have fundamental flaws that would decrease performance and/or significantly decrease the
maintainability of code. Almost every system has a mixture of "code that follows the standards" and "code that doesn't
follow the standards". Gentle migration over time to follow a good set of reasonable standards will always be much better
than giving up because standards were not followed in the past.

Overall, the most important thing when writing good code is that you must be able to defend your work.

License

The Insum PL/SQL & SQL Coding Guidelines are licensed under the Apache License, Version 2.0. You may obtain a copy

PL/SQL & SQL Coding Guidelines Version 1.0 Page 6 of 138

https://trivadis.github.io/plsql-and-sql-coding-guidelines/

of the License at http://www.apache.org/licenses/LICENSE-2.0 [http://www.apache.org/licenses/LICENSE-2.0].

Trademarks

All terms that are known trademarks or service marks have been capitalized. All trademarks are the property of their
respective owners.

Disclaimer

The authors and publisher shall have neither liability nor responsibility to any person or entity with respect to the loss or
damages arising from the information contained in this work. This work may include inaccuracies or typographical errors
and solely represent the opinions of the authors. Changes are periodically made to this document without notice. The
authors reserve the right to revise this document at any time without notice.

Revision History

Version Who Date Comment

1.0 Soule 2020.02.05 Forked from the Trivadis [https://trivadis.github.io/plsql-and-sql-coding-guidelines/]
standards with many updates due to coding style and minor updates to grammar, removal
of some sections, changes to titles of other sections, etc.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 7 of 138

http://www.apache.org/licenses/LICENSE-2.0
https://trivadis.github.io/plsql-and-sql-coding-guidelines/

Document Conventions

This document describes rules and recommendations for developing applications using the PL/SQL & SQL Language.

Scope

This document applies to the PL/SQL and SQL language as used within ORACLE databases and tools, which access
ORACLE databases.

SQALE

SQALE (Software Quality Assessment based on Lifecycle Expectations) is a method to support the evaluation of a
software application source code. It is a generic method, independent of the language and source code analysis tools.

SQALE characteristics and subcharacteristics

Characteristic Description and Subcharacteristics

Changeability The capability of the software product to enable a specified modification to be implemented.

Architecture related changeability

Logic related changeability

Data related changeability

Efficiency The capability of the software product to provide appropriate performance, relative to the amount of resources used, under
stated conditions.

Memory use

Processor use

Network use

Maintainability The capability of the software product to be modified. Modifications may include corrections, improvements or adaptation of
the software to changes in environment, and in requirements and functional specifications.

Understandability

Readability

Portability The capability of the software product to be transferred from one environment to another.

Compiler related portability

Hardware related portability

Language related portability

OS related portability

Software related portability

Time zone related portability.

Reliability The capability of the software product to maintain a specified level of performance when used under specified conditions.

Architecture related reliability

Data related reliability

PL/SQL & SQL Coding Guidelines Version 1.0 Page 8 of 138

Data related reliability

Exception handling

Fault tolerance

Instruction related reliability

Logic related reliability

Resource related reliability

Synchronization related reliability

Unit tests coverage.

Reusability The capability of the software product to be reused within the development process.

Modularity

Transportability.

Security The capability of the software product to protect information and data so that unauthorized persons or systems cannot read
or modify them and authorized persons or systems are not denied access to them.

API abuse

Errors (e.g. leaving a system in a vulnerable state)

Input validatation and representation

Security features.

Testability The capability of the software product to enable modified software to be validated.

Integration level testability

Unit level testability.

Severity of the rule

Blocker

Will or may result in a bug.

Critical

Will have a high/direct impact on the maintenance cost.

Major

Will have a medium/potential impact on the maintenance cost.

Minor

Will have a low impact on the maintenance cost.

Info

Very low impact; it is just a remediation cost report.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 9 of 138

Keywords used

Keyword Meaning

Always Emphasizes this rule must be enforced.

Never Emphasizes this action must not happen.

Avoid Emphasizes that the action should be prevented, but some exceptions may exist.

Try Emphasizes that the rule should be attempted whenever possible and
appropriate.

Example Precedes text used to illustrate a rule or a recommendation.

Reason Explains the thoughts and purpose behind a rule or a recommendation.

Restriction Describes the circumstances to be fulfilled to make use of a rule.

Naming
Conventions

General Guidelines

1. Never use names with a leading numeric character.

2. Always choose meaningful and specific names.

3. Avoid using abbreviations.

4. If abbreviations are used, they must be widely known and accepted.

5. Create a glossary with all accepted abbreviations.

6. Never use ORACLE keywords as names. A list of ORACLEs keywords may be found in the dictionary view
V$RESERVED_WORDS .

7. Avoid adding redundant or meaningless prefixes and suffixes to identifiers.
Example: CREATE TABLE emp_table .

8. Always use one spoken language (e.g. English, German, French) for all objects in your application.

9. Always use the same names for elements with the same meaning.

Naming Conventions for PL/SQL

In general, ORACLE is not case sensitive with names. A variable named personname is equal to one named PersonName,
as well as to one named PERSONNAME. Some products (e.g. TMDA by Trivadis, APEX, OWB) put each name within double
quotes (") so ORACLE will treat these names to be case sensitive. Using case sensitive variable names force developers to
use double quotes for each reference to the variable. Our recommendation is to write all names in lowercase and to avoid
double quoted identifiers.

A widely used convention is to follow a {prefix}variablecontent{suffix} pattern.

The following table shows a possible set of naming conventions.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 10 of 138

Identifier Prefix Suffix Example

Global Variable g_ g_version

Local Variable l_ l_version

Constants * k_ k_employee_permanent

Record r_ r_employee

Array / Table t_ t_employee

Object o_ o_employee

Cursor Parameter p_ p_empno

In Parameter in_ in_empno

Out Parameter out_ out_ename

In/Out Parameter io_ io_employee

Record Type Definitions r_ _type r_employee_type

Array/Table Type Definitions t_ _type t_employee_type

Exception e_ e_employee_exists

Subtypes _type big_string_type

Cursor _cur employee_cur

* Why k_ instead of c_ for constants? A k is hard (straight lines, hard sound when pronouced in English) while a c is soft
(curved lines and soft sound when pronounced in English). C also has the possibility of being vague (some folks use c_ for
cursors) and sounds changable... Also, very big companies (like Google in their coding standards) use k as a prefix for
constants.

Database Object Naming Conventions

Never enclose object names (table names, column names, etc.) in double quotes to enforce mixed case or lower case
object names in the data dictionary.

Edition Based Redefinition (EBR) is one major exception to this guideline. When naming tables that will be covered by
editioning views, it is preferable to name the covered table in lower case begining with an underscore (for example:
"_employee"). The base table will be covered by an editioning view that has the name employee . This greatly simplifies

migration from non-EBR systems to EBR systems since all existing code already references data stored in employee .
"Embracing the abomination of forced lower case names" highlights the fact that these objects shouldn't be directly
referenced (execpt, obviously, by forward and reverse cross edition triggers during edition migration, and simple
auditing/surrogate key triggers, if they are used). Since developers and users should only be referencing data through
editioning views (which to them are effectively the tables of the applications) they won't be tempted to use the base table.
In addition, when using tools to look at the list of tables, all editioning view covered tables will be aligned together and
thus clearly delinated from non-covered tables.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 11 of 138

Collection Type

A collection type should include the name of the collected objects in their name. Furthermore, they should have the suffix
_ct to identify it as a collection.

Optionally prefixed by a project abbreviation.

Examples:

employee_ct

order_ct

Column

Singular name of what is stored in the column (unless the column data type is a collection, in this case you use plural
names)

Add a useful comment to the database dictionary for every column.

DML / Instead of Trigger

Choose a naming convention that includes:

either

the name of the object the trigger is added to,

the activity done by the trigger,

the suffix _trg

or

the name of the object the trigger is added to,

any of the triggering events:

_br_iud for Before Row on Insert, Update and Delete

_io_id for Instead of Insert and Delete

Examples:

employee_br_iud

order_audit_trg

order_journal_trg

Foreign Key Constraint

Table name followed by referenced table name followed by a _fk and an optional number suffix. If working on a pre-12.2
database, then you will probably end up being forced into abbreviations due to short object name lengths in older
databases.

Examples:

employee_department_fk

PL/SQL & SQL Coding Guidelines Version 1.0 Page 12 of 138

sct_icmd_ic_fk1 --Pre 12.2 database

Function

Name is built from a verb followed by a noun in general. Nevertheless, it is not sensible to call a function get_... as a
function always gets something.

The name of the function should answer the question “What is the outcome of the function?”

Optionally prefixed by a project abbreviation.

Example: employee_by_id

If more than one function provides the same outcome, you have to be more specific with the name.

Index

Indexes serving a constraint (primary, unique or foreign key) are named accordingly.

Other indexes should have the name of the table and columns (or their purpose) in their name and should also have _idx

as a suffix.

Object Type

The name of an object type is built by its content (singular) followed by a _ot suffix.

Optionally prefixed by a project abbreviation.

Example: employee_ot

Package

Name is built from the content that is contained within the package.

Optionally prefixed by a project abbreviation.

Examples:

employee_api - API for the employee table

logger - Utilities including logging support

constants - Constants for use across a project

types - Types for use across a project

Primary Key Constraint

Table name or table abbreviation followed by the suffix _pk .

Examples:

employee_pk

department_pk

contract_pk

PL/SQL & SQL Coding Guidelines Version 1.0 Page 13 of 138

Procedure

Name is built from a verb followed by a noun. The name of the procedure should answer the question “What is done?”

Procedures and functions are often named with underscores between words because some editors write all letters in
uppercase in the object tree, so it is difficult to read them.

Optionally prefixed by a project abbreviation.

Examples:

calculate_salary

set_hiredate

check_order_state

Sequence

Version: Pre 12 only, 12 and later use identity columns, or potentially even better, use a default of
to_number(sys_guid(), 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX') .

Name is built from the table name the sequence serves as primary key generator and the suffix _seq or the purpose of
the sequence followed by a _seq .

Optionally prefixed by a project abbreviation.

Examples:

employee_seq

order_number_seq

Synonym

Synonyms should share the name with the object referenced in another schema.

System Trigger

Name of the event the trigger is based on.

Activity done by the trigger

Suffix _trg

Examples:

ddl_audit_trg

logon_trg

Table

Singular name of what is contained in the table.

Add a comment to the database dictionary for every table and every column in the table.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 14 of 138

Optionally prefixed by a project abbreviation.

Examples:

employee

department

sct_contract

sct_contract_line

sct_incentive_module

Reason: Singular names have the following advantages over plural names: 1. In general, tables represent entities. Entities
are singular. This encourages the art of Entity-Relationship modeling. 2. If all table names are singular, then you don't have
to know if a table has a single row or multiple rows before you use it. 3. Plural names can be vastly different from singular
names. What is the plural of news? lotus? knife? cactus? nucleus? There are so many words that are difficult and
nonstandard to pluralize that it can add significant work to a project to 'figure out the plurals'. 4. For non-native speakers
of whatever language is being used for table names, point number 3 is magnified significantly. 5. Plurals add extra
unnecessary length to table names. 6. By far the biggest reason: There is no value in going through all the work to plural a
table name. SQL statements often deal with a single row from a table with multiple rows, so you can't make the argument
that employees is better than employee 'because the SQL will read better'.

Example (bad):

Example (good):

Surrogate Key Columns

Surrogate primary key columns should be the table name with an underscore and id appended. For example:
employee_id

Reason: Naming the surrogate primary key column the same name that it would have (at least 99% of the time) when used
as a foreign key allows the use of the using clause in SQL which greatly increases readability and maintainability of SQL
code. When each table has a surrogate primary key column named id , then select clauses that select multiple id
columns will need aliases (more code, harder to read and maintain). Additionaly, the id surrogate key column means that
every join will be forced into the on syntax which is more error-prone and harder to read than the using clause.

Example (bad):

1
2
3
4
5
6

well_bores
well_bore_completions
well_bore_completion_components
well_bore_studies
well_bore_study_results
wells

1
2
3
4
5
6

well
well_bore
well_bore_completion
well_bore_completion_component
well_bore_study
well_bore_study_result

PL/SQL & SQL Coding Guidelines Version 1.0 Page 15 of 138

Example (good):

Temporary Table (Global Temporary Table)

Naming as described for tables.

Ideally suffixed by _gtt

Optionally prefixed by a project abbreviation.

Examples:

employee_gtt

contract_gtt

Unique Key Constraint

Table name followed by the role of the unique key constraint, a _uk and an optional number suffix, if necessary.

Examples:

employee_name_uk

department_deptno_uk

sct_contract_uk

View

Singular name of what is contained in the view.

Ideally, suffixed by an indicator identifying the object as a view like _v or _vw (mostly used, when a 1:1 view layer lies
above the table layer, but not used for editioning views)

Add a comment to the database dictionary for every view and every column.

Optionally prefixed by a project abbreviation.

Examples:

active_order -- A view that selects only active orders from the order table

order_v -- A view to the order table

1
2
3
4
5
6

select e.id as employee_id
 ,d.id as department_id
 ,e.last_name
 ,d.name
 from employee e
 join department d on (e.department_id = d.id);

1
2
3
4
5
6

select e.employee_id
 ,department_id
 ,e.last_name
 ,d.name
 from employee e
 join department d using (department_id);

PL/SQL & SQL Coding Guidelines Version 1.0 Page 16 of 138

order -- An editioning view that covers the "_order" base table

PL/SQL & SQL Coding Guidelines Version 1.0 Page 17 of 138

Coding Style

General Style

Formatting

Rules

Rule Description

1 All code is written in lowercase.

2 3 space indention.

3 One command per line.

4 Keywords loop , else , elseif , end if , when on a new line.

5 Commas in front of separated elements.

6 Call parameters aligned, operators aligned, values aligned.

7 SQL keywords are right aligned within a SQL command.

8 Within a program unit only line comments -- are used.

9 Brackets are used when needed or when helpful to clarify a
construct.

Example

PL/SQL & SQL Coding Guidelines Version 1.0 Page 18 of 138

Package Version Function

When version control is not available, each package could have a package_version function that returns a varchar2.

Note: If you are using a version control system (like Git for example) to track all code changes and you feel that you'll be
able to track everything below using your version control system, and everyone that might need to figure out 'what is
happening', from all developers to purely operational DBAs, knows how to use the version control system to figure out the
below, then you might consider the below redundant and 'extra work'. If so, feel free not implement this function.

PACKAGE SPEC

PACKAGE BODY

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

procedure set_salary(in_employee_id IN employee.employee_id%type)
is
 cursor c_employee(p_employee_id IN employee.employee_id%type) is
 select last_name
 , first_name
 , salary
 from employee
 where employee_id = p_employee_id
 order by last_name
 , first_name;

 r_employee c_employee%rowtype;
 l_new_salary employee.salary%type;
begin
 open c_employee(p_employee_id => in_employee_id);
 fetch c_employee into r_employee;
 close c_employee;

 new_salary (in_employee_id => in_employee_id
 , out_salary => l_new_salary);

 -- Check whether salary has changed
 if r_employee.salary <> l_new_salary then
 update employee
 set salary = l_new_salary
 where employee_id = in_employee_id;
 end if;
end set_salary;

1
2
3
4
5
6

--This function returns the version number of the package using the following rules:
-- 1. If there is a major change that impacts multiple packages, increment the first digit, e.g.
03.05.09 -> 04.00.00
-- 2. If there is a change to the package spec, increment the first dot, e.g. 03.02.05 ->
03.03.00
-- 3. If there is a minor change, only to the package body, increment the last dot e.g. 03.02.05
-> 03.02.06
-- 4. If the function returns a value ending in WIP, then the package is actively being worked
on by a developer.
function package_version return varchar2;

PL/SQL & SQL Coding Guidelines Version 1.0 Page 19 of 138

Some notes on the above: We are computer scientists, we write dates as YYYY-MM-DD, not DD-MON-RR or MON-DD-YYYY
or any other way.

If you are in the middle of an update, then the function would look like this:

Comments Style

Commenting Goals

Code comments are there to help future readers of the code (there is a good chance that future reader is you... Any code
that you wrote six months to a year ago might as well have been written by someone else) understand how to use the
code (especially in PL/SQL package specs) and how to maintain the code (especially in PL/SQL package bodies).

The JavaDoc Template

Use the JavaDoc style comments, as seen in the example below and read more here JavaDoc Template [https://plsql-md-
doc.readthedocs.io/en/latest/javadoc-template/] and JavaDoc for the Oracle Database a la DBDOC
[https://www.thatjeffsmith.com/archive/2012/03/javadoc-for-the-database-a-la-dbdoc-via-sql-developer/].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

-- Increment the version number based upon the following rules
-- 1. If there is a major change that impacts multiple packages, increment the first digit,
e.g. 03.05.09 -> 04.00.00
-- 2. If there is a change to the package spec, increment the first dot, e.g. 03.02.05 ->
03.03.00
-- 3. If there is a minor change, only to the package body, increment the last dot e.g.
03.02.05 -> 03.02.06
-- 4. If a developer begins work on a package, increment the comment version and include the
words 'IN PROGRESS' in
-- the new version line. Increment the return value and add WIP to the return value.
Example: return '01.00.01 WIP'
-- And then IMMEDIATELY push/commit & compile the package.
-- As you are working on the package and make updates to lines, use the version number at the
end of the line to indicate when
-- the line was changed. Example: l_person := 'Bob'; -- 01.00.01 Bob is the new person, was
Joe.
-- 5. Once work is complete, remove 'IN PROGRESS' from the comment and remove WIP from the
return value.
-- 6. If your work crosses the boundary of a sprint, having WIP in the return value will
indicate that the package should not be promoted.
function package_version return varchar2
is
begin
 -- 01.00.00 YYYY-MM-DD First & Last Name Initial Version
 -- 01.00.01 YYYY-MM-DD First & Last Name Fixed issue number 72 documented in Jira ticket 87:
https://ourjiraurl.com/f?p=87
 return '01.00.01' ;
end package_version;

1
2
3
4
5
6

[snip]
 -- 01.00.00 YYYY-MM-DD First & Last Name Initial Version
 -- 01.00.01 YYYY-MM-DD First & Last Name Fixed issue documented in Jira ticket 87:
https://ourjiraurl.com/f?p=87
 -- 01.00.02 2019-10-25 Rich Soule IN PROGRESS Fixing issue documented in Jira ticket
90: https://ourjiraurl.com/f?p=90
 return '01.00.02 WIP' ;
end package_version;

PL/SQL & SQL Coding Guidelines Version 1.0 Page 20 of 138

https://plsql-md-doc.readthedocs.io/en/latest/javadoc-template/
https://www.thatjeffsmith.com/archive/2012/03/javadoc-for-the-database-a-la-dbdoc-via-sql-developer/

Commenting Tags

Tag Meaning Example

example Code snippet that shows how the procedure or function can be
called.

issue Ticketing system issue or ticket that explains the code functionality @issue IE-234

param Description of a parameter. @param in_string input string

return Description of the return value of a function. @return result of the calculation

throws Describe errors that may be raised by the program unit. @throws no_data_found

Generated Documentation

If you used the JavaDoc syntax then you can use plsql-md-doc [https://github.com/OraOpenSource/plsql-md-doc] to
generate an easy to read document.

Alternatively, Oracle SQL Developer [https://www.oracle.com/database/technologies/appdev/sql-developer.html] or
PL/SQL Developer include documentation functionality based on a javadoc-like tagging.

Commenting Conventions

Inside a program unit only use the line commenting technique -- unless you temporarly deactivate code sections for
testing.

To comment the source code for later document generation, comments like /** ... */ are used. Within these
documentation comments, tags may be used to define the documentation structure.

Code Instrumentation

Code Instrumentation refers, among other things, to an ability to monitor, measure, and diagnose errors. In short, we'll call
them debug messages or log messages.

By far, the best logging framework available is Logger [https://github.com/OraOpenSource/Logger] from OraOpenSource
[https://github.com/OraOpenSource/].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

/**
 * Description
 *
 *
 * @example
 *
 * @issue
 *
 * @author
 * @created
 * @param
 * @return
 */

PL/SQL & SQL Coding Guidelines Version 1.0 Page 21 of 138

https://github.com/OraOpenSource/plsql-md-doc
https://www.oracle.com/database/technologies/appdev/sql-developer.html
https://github.com/OraOpenSource/Logger
https://github.com/OraOpenSource/

Consider using logger calls instead of comments when the information will, explain the logic, help diagnose errors, and
monitor execution flow.

For example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

procedure verify_valid_auth
is
 l_scope logger_logs.scope%type := k_scope_prefix || 'verify_valid_auth';
begin
 logger.log('BEGIN', l_scope);

 if is_token_expired then
 logger.log('Time to renew the expired token, and set headers.', l_scope);
 hubspot_auth;
 else
 logger.log('We have a good token, set headers.', l_scope);
 set_rest_headers;
 end if;

 logger.log('END', l_scope);

exception
 when OTHERS then
 logger.log_error('Unhandled Exception', l_scope);
 raise;
end verify_valid_auth;

PL/SQL & SQL Coding Guidelines Version 1.0 Page 22 of 138

Language Usage

General

G-1010: Try to label your sub blocks.

Reason

It's a good alternative for comments to indicate the start and end of a named processing.

Example (bad)

Example (good)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

begin
 begin
 null;
 end;

 begin
 null;
 end;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

<<good>>
begin
 <<prepare_data>>
 begin
 null;
 end prepare_data;

 <<process_data>>
 begin
 null;
 end process_data;
end good;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 23 of 138

G-1020: Have a matching loop or block label.

Reason

Use a label directly in front of loops and nested anonymous blocks:

To give a name to that portion of code and thereby self-document what it is doing.

So that you can repeat that name with the end statement of that block or loop.

Example (bad)

Example (good)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

declare
 i integer;
 k_min_value constant integer := 1;
 k_max_value constant integer := 10;
 k_increment constant integer := 1;
begin
 <<prepare_data>>
 begin
 null;
 end;

 <<process_data>>
 begin
 null;
 end;

 i := k_min_value;
 <<while_loop>>
 while (i <= k_max_value)
 loop
 i := i + k_increment;
 end loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop;

 <<for_loop>>
 for i in k_min_value..k_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 24 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

declare
 i integer;
 k_min_value constant integer := 1;
 k_max_value constant integer := 10;
 k_increment constant integer := 1;
begin
 <<prepare_data>>
 begin
 null;
 end prepare_data;

 <<process_data>>
 begin
 null;
 end process_data;

 i := k_min_value;
 <<while_loop>>
 while (i <= k_max_value)
 loop
 i := i + k_increment;
 end loop while_loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop basic_loop;

 <<for_loop>>
 for i in k_min_value..k_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop for_loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 25 of 138

G-1030: Avoid defining variables that are not used.

Reason

Unused variables decrease the maintainability and readability of your code.

Example (bad)

Example (good)

Minor

Efficiency, Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body my_package is
 procedure my_proc is
 l_last_name employee.last_name%type;
 l_first_name employee.first_name%type;
 k_department_id constant department.department_id%type := 10;
 e_good exception;
 begin
 select e.last_name
 into l_last_name
 from employee e
 where e.department_id = k_department_id;
 exception
 when no_data_found then null; -- handle_no_data_found;
 when too_many_rows then null; -- handle_too_many_rows;
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

create or replace package body my_package is
 procedure my_proc is
 l_last_name employee.last_name%type;
 k_department_id constant department.department_id%type := 10;
 e_good exception;
 begin
 select e.last_name
 into l_last_name
 from employee e
 where e.department_id = k_department_id;

 raise e_good;
 exception
 when no_data_found then null; -- handle_no_data_found;
 when too_many_rows then null; -- handle_too_many_rows;
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 26 of 138

G-1040: Always avoid dead code.

Reason

Any part of your code, which is no longer used or cannot be reached, should be eliminated from your programs to simplify
the code.

Example (bad)

Example (good)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

declare
 k_dept_purchasing constant departments.department_id%type := 30;
begin
 if 2=3 then
 null; -- some dead code here
 end if;

 null; -- some enabled code here

 <<my_loop>>
 loop
 exit my_loop;
 null; -- some dead code here
 end loop my_loop;

 null; -- some other enabled code here

 case
 when 1 = 1 and 'x' = 'y' then
 null; -- some dead code here
 else
 null; -- some further enabled code here
 end case;

 <<my_loop2>>
 for r_emp in (select last_name
 from employee
 where department_id = k_dept_purchasing
 or commission_pct is not null
 and 5=6)
 -- "or commission_pct is not null" is dead code
 loop
 sys.dbms_output.put_line(r_emp.last_name);
 end loop my_loop2;

 return;
 null; -- some dead code here
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 27 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

declare
 k_dept_admin constant dept.deptno%type := 10;
begin
 null; -- some enabled code here
 null; -- some other enabled code here
 null; -- some further enabled code here

 <<my_loop2>>
 for r_emp in (select last_name
 from employee
 where department_id = k_dept_admin
 or commission_pct is not null)
 loop
 sys.dbms_output.put_line(r_emp.last_name);
 end loop my_loop2;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 28 of 138

G-1050: Avoid using literals in your code.

Reason

Literals are often used more than once in your code. Having them defined as a constant reduces typos in your code and
improves the maintainability.

All constants should be collated in just one package used as a library. If these constants should be used in SQL too it is
good practice to write a deterministic package function for every constant.

Example (bad)

Example (good)

Minor

Changeability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

declare
 l_job employee.job_id%type;
begin
 select e.job_id
 into l_job
 from employee e
 where e.manager_id is null;

 if l_job = 'ad_pres' then
 null;
 end if;
exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

create or replace package constants is
 k_president constant employee.job_id%type := 'ad_pres';
end constants;
/

declare
 l_job employee.job_id%type;
begin
 select e.job_id
 into l_job
 from employee e
 where e.manager_id is null;

 if l_job = constants.k_president then
 null;
 end if;
exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 29 of 138

G-1060: Avoid storing ROWIDs or UROWIDs in database tables.

Reason

It is an extremely dangerous practice to store ROWIDs in a table, except for some very limited scenarios of runtime
duration. Any manually explicit or system generated implicit table reorganization will reassign the row's ROWID and break
the data consistency.

Instead of using ROWID for later reference to the original row one should use the primary key column(s).

Example (bad)

Example (good)

Major

Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

begin
 insert into employee_log (employee_id
 ,last_name
 ,first_name
 ,rid)
 select employee_id
 ,last_name
 ,first_name
 ,rowid
 from employee;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

begin
 insert into employee_log (employee_id
 ,last_name
 ,first_name)
 select employee_id
 ,last_name
 ,first_name
 from employee;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 30 of 138

G-1070: Avoid nesting comment blocks.

Reason

Having an end-of-comment within a block comment will end that block-comment. This does not only influence your code
but is also very hard to read.

Example (bad)

Example (good)

Minor

Maintainability

1
2
3
4
5
6
7

begin
 /* comment one -- nested comment two */
 null;
 -- comment three /* nested comment four */
 null;
end;
/

1
2
3
4
5
6
7

begin
 /* comment one, comment two */
 null;
 -- comment three, comment four
 null;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 31 of 138

Variables & Types

General

G-2110: Try to use anchored declarations for variables, constants and types.

REASON

Changing the size of the database column last_name in the employee table from varchar2(20 char) to varchar2(30
char) will result in an error within your code whenever a value larger than the hard coded size is read from the table. This
can be avoided using anchored declarations.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body my_package is
 procedure my_proc is
 l_last_name varchar2(20 char);
 k_first_row constant integer := 1;
 begin
 select e.last_name
 into l_last_name
 from employee e
 where rownum = k_first_row;
 exception
 when no_data_found then null; -- handle no_data_found
 when too_many_rows then null; -- handle too_many_rows (impossible)
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body my_package is
 procedure my_proc is
 l_last_name employee.last_name%type;
 k_first_row constant integer := 1;
 begin
 select e.last_name
 into l_last_name
 from employee e
 where rownum = k_first_row;
 exception
 when no_data_found then null; -- handle no_data_found
 when too_many_rows then null; -- handle too_many_rows (impossible)
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 32 of 138

G-2120: Try to have a single location to define your types.

REASON

Single point of change when changing the data type. No need to argue where to define types or where to look for existing
definitions.

A single location could be either a type specification package or the database (database-defined types).

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Changeability

1
2
3
4
5
6
7
8
9

create or replace package body my_package is
 procedure my_proc is
 subtype big_string_type is varchar2(1000 char);
 l_note big_string_type;
 begin
 l_note := some_function();
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

create or replace package types is
 subtype big_string_type is varchar2(1000 char);
end types;
/

create or replace package body my_package is
 procedure my_proc is
 l_note types.big_string_type;
 begin
 l_note := some_function();
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 33 of 138

G-2130: Try to use subtypes for constructs used often in your code.

REASON

Single point of change when changing the data type.

Your code will be easier to read as the usage of a variable/constant may be derived from its definition.

EXAMPLES OF POSSIBLE SUBTYPE DEFINITIONS

Type Usage

ora_name_type Object corresponding to the ORACLE naming conventions (table, variable, column, package,
etc.).

max_vc2_type String variable with maximal VARCHAR2 size.

array_index_type Best fitting data type for array navigation.

id_type Data type used for all primary key (table_name_id) columns.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Changeability

1
2
3
4
5
6
7
8

create or replace package body my_package is
 procedure my_proc is
 l_note varchar2(1000 char);
 begin
 l_note := some_function();
 end my_proc;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

create or replace package types is
 subtype big_string_type is varchar2(1000 char);
end types;
/

create or replace package body my_package is
 procedure my_proc is
 l_note types.big_string_type;
 begin
 l_note := some_function();
 end my_proc;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 34 of 138

G-2140: Never initialize variables with NULL.

REASON

Variables are initialized to NULL by default.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

1
2
3
4
5
6

declare
 l_note big_string_type := null;
begin
 sys.dbms_output.put_line(l_note);
end;
/

1
2
3
4
5
6

declare
 l_note big_string_type;
begin
 sys.dbms_output.put_line(l_note);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 35 of 138

G-2150: Never use comparisons with NULL values, use IS [NOT] NULL.

REASON

The NULL value can cause confusion both from the standpoint of code review and code execution. You must always use
the IS NULL or IS NOT NULL syntax when you need to check if a value is or is not NULL .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Blocker

Portability, Reliability

1
2
3
4
5
6
7
8

declare
 l_value integer;
begin
 if l_value = null then
 null; -- Nothing ever equals null, so this code will never be run
 end if;
end;
/

1
2
3
4
5
6
7
8

declare
 l_value integer;
begin
 if l_value is null then
 null;
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 36 of 138

G-2160: Avoid initializing variables using functions in the declaration section.

REASON

If your initialization fails, you will not be able to handle the error in your exceptions block.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

Reliability

1
2
3
4
5
6
7
8

declare
 k_department_id constant integer := 100;
 l_department_name department.department_name%type :=
 department_api.name_by_id(in_id => k_department_id);
begin
 sys.dbms_output.put_line(l_department_name);
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

declare
 k_department_id constant integer := 100;
 k_unkown_name constant department.department_name%type := 'unknown';
 l_department_name department.department_name%type;
begin
 <<init>>
 begin
 l_department_name := department_api.name_by_id(in_id => k_department_id);
 exception
 when value_error then
 l_department_name := k_unkown_name;
 end init;

 sys.dbms_output.put_line(l_department_name);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 37 of 138

G-2170: Never overload variables.

REASON

The readability of your code will be higher when you do not overload variables.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

begin
 <<main>>
 declare
 k_main constant user_objects.object_name%type := 'test_main';
 k_sub constant user_objects.object_name%type := 'test_sub';
 k_sep constant user_objects.object_name%type := ' - ';
 l_variable user_objects.object_name%type := k_main;
 begin
 <<sub>>
 declare
 l_variable user_objects.object_name%type := k_sub;
 begin
 sys.dbms_output.put_line(l_variable || k_sep || main.l_variable);
 end sub;
 end main;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

begin
 <<main>>
 declare
 k_main constant user_objects.object_name%type := 'test_main';
 k_sub constant user_objects.object_name%type := 'test_sub';
 k_sep constant user_objects.object_name%type := ' - ';
 l_main_variable user_objects.object_name%type := k_main;
 begin
 <<sub>>
 declare
 l_sub_variable user_objects.object_name%type := k_sub;
 begin
 sys.dbms_output.put_line(l_sub_variable || k_sep || l_main_variable);
 end sub;
 end main;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 38 of 138

G-2180: Never use quoted identifiers.

REASON

Quoted identifiers make your code hard to read and maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 "sal+comm" integer;
 "my constant" constant integer := 1;
 "my exception" exception;
begin
 "sal+comm" := "my constant";
exception
 when "my exception" then
 null;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 l_sal_comm integer;
 k_my_constant constant integer := 1;
 e_my_exception exception;
begin
 l_sal_comm := k_my_constant;
exception
 when e_my_exception then
 null;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 39 of 138

G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.

REASON

You should ensure that the name you have chosen well defines its purpose and usage. While you can save a few
keystrokes typing very short names, the resulting code is obscure and hard for anyone besides the author to understand.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 i integer;
 c constant integer := 1;
 e exception;
begin
 i := c;
exception
 when e then
 null;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 l_sal_comm integer;
 k_my_constant constant integer := 1;
 e_my_exception exception;
begin
 l_sal_comm := k_my_constant;
exception
 when e_my_exception then
 null;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 40 of 138

G-2190: Avoid using ROWID or UROWID.

REASON

Be careful about your use of Oracle-specific data types like ROWID and UROWID . They might offer a slight improvement in
performance over other means of identifying a single row (primary key or unique index value), but that is by no means
guaranteed.

Use of ROWID or UROWID means that your SQL statement will not be portable to other SQL databases. Many developers
are also not familiar with these data types, which can make the code harder to maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Portability, Reliability

1
2
3
4
5
6
7
8
9

declare
 l_department_name department.department_name%type;
 l_rowid rowid;
begin
 update department
 set department_name = l_department_name
 where rowid = l_rowid;
end;
/

1
2
3
4
5
6
7
8
9

declare
 l_department_name department.department_name%type;
 l_department_id department.department_id%type;
begin
 update department
 set department_name = l_department_name
 where department_id = l_department_id;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 41 of 138

Numeric Data Types

PL/SQL & SQL Coding Guidelines Version 1.0 Page 42 of 138

G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.

REASON

PLS_INTEGER having a length of -2,147,483,648 to 2,147,483,647, on a 32bit system.

There are many reasons to use PLS_INTEGER instead of NUMBER :

PLS_INTEGER uses less memory

PLS_INTEGER uses machine arithmetic, which is up to three times faster than library arithmetic, which is used by
NUMBER .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency

1
2
3
4
5
6
7
8
9

create or replace package body constants is
 k_big_increase constant number(1,0) := 1;

 function big_increase return number is
 begin
 return k_big_increase;
 end big_increase;
end constants;
/

1
2
3
4
5
6
7
8
9

create or replace package body constants is
 k_big_increase constant pls_integer := 1;

 function big_increase return pls_integer is
 begin
 return k_big_increase;
 end big_increase;
end constants;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 43 of 138

G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.

RESTRICTION

ORACLE 11g or later

REASON

SIMPLE_INTEGER does no checks on numeric overflow, which results in better performance compared to the other
numeric datatypes.

With ORACLE 11g, the new data type SIMPLE_INTEGER has been introduced. It is a sub-type of PLS_INTEGER and covers
the same range. The basic difference is that SIMPLE_INTEGER is always NOT NULL . When the value of the declared
variable is never going to be null then you can declare it as SIMPLE_INTEGER . Another major difference is that you will
never face a numeric overflow using SIMPLE_INTEGER as this data type wraps around without giving any error.
SIMPLE_INTEGER data type gives major performance boost over PLS_INTEGER when code is compiled in NATIVE mode,

because arithmetic operations on SIMPLE_INTEGER type are performed directly at the hardware level.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency

1
2
3
4
5
6
7
8
9

create or replace package body constants is
 k_big_increase constant number(1,0) := 1;

 function big_increase return number is
 begin
 return co_big_increase;
 end big_increase;
end constants;
/

1
2
3
4
5
6
7
8
9

create or replace package body constants is
 k_big_increase constant simple_integer := 1;

 function big_increase return simple_integer is
 begin
 return co_big_increase;
 end big_increase;
end constants;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 44 of 138

Character Data Types

G-2310: Avoid using CHAR data type.

REASON

CHAR is a fixed length data type, which should only be used when appropriate. CHAR columns/variables are always filled
to its specified lengths; this may lead to unwanted side effects and undesired results.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability

1
2
3
4
5

create or replace package types
is
 subtype description_type is char(200);
end types;
/

1
2
3
4
5

create or replace package types
is
 subtype description_type is varchar2(200 char);
end types;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 45 of 138

G-2320: Avoid using VARCHAR data type.

REASON

Do not use the VARCHAR data type. Use the VARCHAR2 data type instead. Although the VARCHAR data type is currently
synonymous with VARCHAR2 , the VARCHAR data type is scheduled to be redefined as a separate data type used for
variable-length character strings compared with different comparison semantics.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Portability

1
2
3
4

create or replace package types is
 subtype description_type is varchar(200 char);
end types;
/

1
2
3
4

create or replace package types is
 subtype description_type is varchar2(200 char);
end types;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 46 of 138

G-2330: Never use zero-length strings to substitute NULL.

REASON

Today zero-length strings and NULL are currently handled identical by ORACLE. There is no guarantee that this will still be
the case in future releases, therefore if you mean NULL use NULL .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Portability

1
2
3
4
5
6
7
8
9

create or replace package body constants is
 k_null_string constant varchar2(1) := '';

 function null_string return varchar2 is
 begin
 return k_null_string;
 end null_string;
end constants;
/

1
2
3
4
5
6
7
8

create or replace package body constants is

 function empty_string return varchar2 is
 begin
 return null;
 end empty_string;
end constants;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 47 of 138

G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).

REASON

Changes to NLS_LENGTH_SEMANTICS will only be picked up by your code after a recompilation.

In a multibyte environment a VARCHAR2(50) definition may not necessarily hold 50 characters, when multibyte characters
a part of the value that should be stored unless the definition was done using the char semantic.

Additionally, business users never say last names should be 50 bytes in length
[https://carsandcode.com/2019/01/14/names-can-be-up-to-50-bytes-in-length/].

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Reliability

1
2
3
4

create or replace package types is
 subtype description_type is varchar2(200);
end types;
/

1
2
3
4

create or replace package types is
 subtype description_type is varchar2(200 char);
end types;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 48 of 138

https://carsandcode.com/2019/01/14/names-can-be-up-to-50-bytes-in-length/

Boolean Data Types

G-2410: Try to use boolean data type for values with dual meaning.

REASON

The use of TRUE and FALSE clarifies that this is a boolean value and makes the code easier to read.

EXAMPLE (BAD)

EXAMPLE (BETTER)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

declare
 k_newfile constant pls_integer := 1000;
 k_oldfile constant pls_integer := 500;
 l_bigger pls_integer;
begin
 if k_newfile < k_oldfile then
 l_bigger := constants.k_numeric_true;
 else
 l_bigger := constants.k_numeric_false;
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

declare
 k_newfile constant pls_integer := 1000;
 k_oldfile constant pls_integer := 500;
 l_bigger boolean;
begin
 if k_newfile < k_oldfile then
 l_bigger := true;
 else
 l_bigger := false;
 end if;
end;
/

1
2
3
4
5
6
7
8

declare
 k_newfile constant pls_integer := 1000;
 k_oldfile constant pls_integer := 500;
 l_bigger boolean;
begin
 l_bigger := nvl(k_newfile < k_oldfile,false);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 49 of 138

Large Objects

G-2510: Avoid using the LONG and LONG RAW data types.

REASON

LONG and LONG RAW data types have been deprecated by ORACLE since version 8i - support might be discontinued in
future ORACLE releases.

There are many constraints to LONG datatypes in comparison to the LOB types.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Portability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package example_package is
 g_long long;
 g_raw long raw;

 procedure do_something;
end example_package;
/

create or replace package body example_package is
 procedure do_something is
 begin
 null;
 end do_something;
end example_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package example_package is
 procedure do_something;
end example_package;
/

create or replace package body example_package is
 g_long clob;
 g_raw blob;

 procedure do_something is
 begin
 null;
 end do_something;
end example_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 50 of 138

DML & SQL

General

G-3110: Always specify the target columns when coding an insert statement.

REASON

Data structures often change. Having the target columns in your insert statements will lead to change-resistant code.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Note: The above good example assumes the use of an identity column for department_id.

Major

Maintainability, Reliability

1
2
3
4
5

insert into department
 values (department_seq.nextval
 ,'Support'
 ,100
 ,10);

1
2
3
4
5
6
7
8

insert into department (department_id
 ,department_name
 ,manager_id
 ,location_id)
 values (null
 ,'Support'
 ,100
 ,10);

PL/SQL & SQL Coding Guidelines Version 1.0 Page 51 of 138

G-3120: Always use table aliases when your SQL statement involves more than one source.

REASON

It is more human readable to use aliases instead of writing columns with no table information.

Especially when using subqueries the omission of table aliases may end in unexpected behaviors and results.

Also, note that even if you have a single table statement, it will almost always at some point in the future end up getting
joined to another table, so you get bonus points if you use table aliases all the time.

EXAMPLE (BAD)

EXAMPLE (BETTER)

EXAMPLE (GOOD)

Using meaningful aliases improves the readability of your code.

EXAMPLE SUBQUERY (BAD)

If the job table has no employee_id column and employee has one this query will not raise an error but return all rows
of the employee table as a subquery is allowed to access columns of all its parent tables - this construct is known as
correlated subquery.

EXAMPLE SUBQUERY (GOOD)

Major

Maintainability

1
2
3
4
5
6

select last_name
 ,first_name
 ,department_name
 from employee
 join department using (department_id)
 where extract(month from hire_date) = extract(month from sysdate);

1
2
3
4
5
6

select e.last_name
 ,e.first_name
 ,d.department_name
 from employee e
 join department d using (department_id)
 where extract(month from e.hire_date) = extract(month from sysdate);

1
2
3
4
5
6

select emp.last_name
 ,emp.first_name
 ,dept.department_name
 from employee emp
 join department dept using (department_id)
 where extract(month from emp.hire_date) = extract(month from sysdate);

1
2
3
4
5
6

select last_name
 ,first_name
 from employee
 where employee_id in (select employee_id
 from job
 where job_title like '%manager%');

PL/SQL & SQL Coding Guidelines Version 1.0 Page 52 of 138

If the job table has no employee_id column this query will return an error due to the directive (given by adding the table
alias to the column) to read the employee_id column from the job table.

1
2
3
4
5
6

select emp.last_name
 ,emp.first_name
 from employee emp
 where emp.employee_id in (select j.employee_id
 from job j
 where j.job_title like '%manager%');

PL/SQL & SQL Coding Guidelines Version 1.0 Page 53 of 138

G-3130: Try to use ANSI SQL-92 join syntax.

REASON

ANSI SQL-92 join syntax supports the full outer join. A further advantage of the ANSI SQL-92 join syntax is the separation
of the join condition from the query filters.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability, Portability

1
2
3
4
5
6
7
8

select e.employee_id
 ,e.last_name
 ,e.first_name
 ,d.department_name
 from employees e
 ,departments d
 where e.department_id = d.department_id
 and extract(month from e.hire_date) = extract(month from sysdate);

1
2
3
4
5
6
7

select emp.employee_id
 ,emp.last_name
 ,emp.first_name
 ,dept.department_name
 from employees emp
 join departments dept using (department_id)
 where extract(month from emp.hire_date) = extract(month from sysdate);

PL/SQL & SQL Coding Guidelines Version 1.0 Page 54 of 138

G-3140: Try to use anchored records as targets for your cursors.

REASON

Using cursor-anchored records as targets for your cursors results enables the possibility of changing the structure of the
cursor without regard to the target structure.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

declare
 cursor c_employee is
 select employee_id, first_name, last_name
 from employee;
 l_employee_id employee.employee_id%type;
 l_first_name employee.first_name%type;
 l_last_name employee.last_name%type;
begin
 open c_employee;
 fetch c_employee into l_employee_id, l_first_name, l_last_name;
 <<process_employee>>
 while c_employee%found
 loop
 -- do something with the data
 fetch c_employee into l_employee_id, l_first_name, l_last_name;
 end loop process_employee;
 close c_employee;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

declare
 cursor c_employee is
 select employee_id, first_name, last_name
 from employee;
 r_employee c_employee%rowtype;
begin
 open c_employee;
 fetch c_employee into r_employee;
 <<process_employee>>
 while c_employee%found
 loop
 -- do something with the data
 fetch c_employee into r_employee;
 end loop process_employee;
 close c_employee;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 55 of 138

G-3150: Try to use identity columns for surrogate keys.

RESTRICTION

ORACLE 12c or higher

REASON

An identity column is a surrogate key by design – there is no reason why we should not take advantage of this natural
implementation when the keys are generated on database level. Using identity column (and therefore assigning
sequences as default values on columns) has a huge performance advantage over a trigger solution.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

create table location (
 location_id number(10) not null
 ,location_name varchar2(60 char) not null
 ,city varchar2(30 char) not null
 ,constraint location_pk primary key (location_id)
)
/

create sequence location_seq start with 1 cache 20
/

create or replace trigger location_bri
 before insert on location
 for each row
begin
 :new.location_id := location_seq.nextval;
end;
/

1
2
3
4
5
6

create table location (
 location_id number(10) generated by default on null as identity
 ,location_name varchar2(60 char) not null
 ,city varchar2(30 char) not null
 ,constraint location_pk primary key (location_id))
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 56 of 138

G-3160: Avoid visible virtual columns.

RESTRICTION

ORACLE 12c

REASON

In contrast to visible columns, invisible columns are not part of a record defined using %rowtype construct. This is helpful
as a virtual column may not be programmatically populated. If your virtual column is visible you have to manually define
the record types used in API packages to be able to exclude them from being part of the record definition.

Invisible columns may be accessed by explicitly adding them to the column list in a SELECT statement.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

alter table employee
 add total_salary generated always as
 (salary + nvl(commission_pct,0) * salary)
/

declare
 r_employee employee%rowtype;
 l_id employee.employee_id%type := 107;
begin
 r_employee := employee_api.employee_by_id(l_id);
 r_employee.salary := r_employee.salary * constants.small_increase();

 update employee
 set row = r_employee
 where employee_id = l_id;
end;
/

Error report -
ORA-54017: UPDATE operation disallowed ON virtual COLUMNS
ORA-06512: at line 9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

alter table employee
 add total_salary invisible generated always as
 (salary + nvl(commission_pct,0) * salary)
/

declare
 r_employee employee%rowtype;
 k_id constant employee.employee_id%type := 107;
begin
 r_employee := employee_api.employee_by_id(k_id);
 r_employee.salary := r_employee.salary * constants.small_increase();

 update employee
 set row = r_employee
 where employee_id = k_id;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 57 of 138

G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store
NULL values.

RESTRICTION

ORACLE 12c

REASON

Default values have been nullifiable until ORACLE 12c. Meaning any tool sending null as a value for a column having a
default value bypassed the default value. Starting with ORACLE 12c default definitions may have an ON NULL definition in
addition, which will assign the default value in case of a null value too.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create table null_test (
 test_case number(2) not null
 ,column_defaulted varchar2(10) default 'Default')
/
insert into null_test(test_case, column_defaulted) values (1,'value');
insert into null_test(test_case, column_defaulted) values (2,default);
insert into null_test(test_case, column_defaulted) values (3,null);

select * from null_test;

TEST_CASE COLUMN_DEF
--------- -----------
 1 Value
 2 Default
 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create table null_test (
 test_case number(2) not null
 ,column_defaulted varchar2(10 char) default on null 'Default')
/
insert into null_test(test_case, column_defaulted) values (1,'value');
insert into null_test(test_case, column_defaulted) values (2,default);
insert into null_test(test_case, column_defaulted) values (3,null);

SELECT * FROM null_test;

 TEST_CASE COLUMN_DEF
---------- ----------
 1 Value
 2 Default
 3 Default

PL/SQL & SQL Coding Guidelines Version 1.0 Page 58 of 138

G-3180: Always specify column names instead of positional references in ORDER BY clauses.

REASON

If you change your select list afterwards the ORDER BY will still work but order your rows differently, when not changing
the positional number. Furthermore, it is not comfortable to the readers of the code, if they have to count the columns in
the SELECT list to know the way the result is ordered.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Changeability, Reliability

1
2
3
4
5
6

select upper(first_name)
 ,last_name
 ,salary
 ,hire_date
 from employee
 order by 4,1,3;

1
2
3
4
5
6
7
8

select upper(first_name) as first_name
 ,last_name
 ,salary
 ,hire_date
 from employee
 order by hire_date
 ,first_name
 ,salary;

PL/SQL & SQL Coding Guidelines Version 1.0 Page 59 of 138

G-3190: Avoid using NATURAL JOIN.

REASON

A natural join joins tables on equally named columns. This may comfortably fit on first sight, but adding logging columns
to a table (updated_by, updated) will result in inappropriate join conditions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Changeability, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

select department_name
 ,last_name
 ,first_name
 from employee natural join department
 order by department_name
 ,last_name;
DEPARTMENT_NAME LAST_NAME FIRST_NAME
------------------------------ ------------------------- --------------------
Accounting Gietz William
Executive De Haan Lex
…

alter table department add updated date default on null sysdate;
alter table employee add updated date default on null sysdate;

select department_name
 ,last_name
 ,first_name
 from employee natural join department
 order by department_name
 ,last_name;

No data found

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

select dept.department_name
 ,emp.last_name
 ,emp.first_name
 from employee emp
 join department dept using (department_id)
 order by dept.department_name
 ,emp.last_name;

DEPARTMENT_NAME LAST_NAME FIRST_NAME
------------------------------ ------------------------- --------------------
Accounting Gietz William
Executive De Haan Lex
…

PL/SQL & SQL Coding Guidelines Version 1.0 Page 60 of 138

G-3200: Avoid using an ON clause when a USING clause will work.

REASON

An on clause requires more code than a using clause and presents a greater possibility for making errors. The using
clause is easier to read and maintain.

Note that the using clause prevents the use of a table alias for the join column in any of the other clauses of the sql
statement.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

1
2
3
4
5

select e.deparment_id
 ,d.department_name
 ,e.last_name
 ,e.first_name
 from employee e join department d on (e.department_id = d.department_id);

1
2
3
4
5

select department_id
 dept.department_name
 ,emp.last_name
 ,emp.first_name
 from employee emp join department dept using (department_id);

PL/SQL & SQL Coding Guidelines Version 1.0 Page 61 of 138

Bulk Operations

G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement for
more than 4 times.

REASON

Context switches between PL/SQL and SQL are extremely costly. BULK Operations reduce the number of switches by
passing an array to the SQL engine, which is used to execute the given statements repeatedly.

(Depending on the PLSQL_OPTIMIZE_LEVEL parameter a conversion to BULK COLLECT will be done by the PL/SQL
compiler automatically.)

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

declare
 t_employee_ids employee_api.t_employee_ids_type;
 k_increase constant employee.salary%type := 0.1;
 k_department_id constant departments.department_id%type := 10;
begin
 t_employee_ids := employee_api.employee_ids_by_department(
 id_in => k_department_id
);
 <<process_employees>>
 for i in 1..t_employee_ids.count()
 loop
 update employee
 set salary = salary + (salary * k_increase)
 where employee_id = t_employee_ids(i);
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 t_employee_ids employee_api.t_employee_ids_type;
 k_increase constant employee.salary%type := 0.1;
 k_department_id constant departments.department_id%type := 10;
begin
 t_employee_ids := employee_api.employee_ids_by_department(
 id_in => k_department_id
);
 <<process_employees>>
 forall i in 1..t_employee_ids.count()
 update employee
 set salary = salary + (salary * k_increase)
 where employee_id = t_employee_ids(i);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 62 of 138

Control Structures

CURSOR

G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.

REASON

The readability of your code will be higher when you avoid negative sentences.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

declare
 cursor employee_cur is
 select last_name
 ,first_name
 from employee
 where commission_pct is not null;

 r_employee employee_cur%rowtype;
begin
 open employee_cur;

 <<read_employees>>
 loop
 fetch employee_cur into r_employee;
 exit read_employees when not employee_cur%found;
 end loop read_employees;

 close employee_cur;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

declare
 cursor employee_cur is
 select last_name
 ,first_name
 from employee
 where commission_pct is not null;

 r_employee employee_cur%rowtype;
begin
 open employee_cur;

 <<read_employees>>
 loop
 fetch employee_cur into r_employee;
 exit read_employees when employee_cur%notfound;
 end loop read_employees;

 close employee_cur;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 63 of 138

G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.

REASON

%notfound is set to true as soon as less than the number of rows defined by the limit clause has been read.

EXAMPLE (BAD)

The employee table holds 107 rows. The example below will only show 100 rows as the cursor attribute notfound is set
to true as soon as the number of rows to be fetched defined by the limit clause is not fulfilled anymore.

EXAMPLE (BETTER)

This example will show all 107 rows but execute one fetch too much (12 instead of 11).

Critical

Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

declare
 cursor employee_cur is
 select *
 from employee
 order by employee_id;

 type t_employee_type is table of employee_cur%rowtype;
 t_employee t_employee_type;
 k_bulk_size constant simple_integer := 10;
begin
 open employee_cur;

 <<process_employees>>
 loop
 fetch employee_cur bulk collect into t_employee limit k_bulk_size;
 exit process_employees when employee_cur%notfound;

 <<display_employees>>
 for i in 1..t_employee.count()
 loop
 sys.dbms_output.put_line(t_employee(i).last_name);
 end loop display_employees;
 end loop process_employees;

 close employee_cur;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 64 of 138

EXAMPLE (GOOD)

This example does the trick (11 fetches only to process all rows)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

declare
 cursor employee_cur is
 select *
 from employee
 order by employee_id;

 type t_employee_type is table of employee_cur%rowtype;
 t_employee t_employee_type;
 k_bulk_size constant simple_integer := 10;
begin
 open employee_cur;

 <<process_employees>>
 loop
 fetch employee_cur bulk collect into t_employee limit k_bulk_size;
 exit process_employees when t_employee.count() = 0;
 <<display_employees>>
 for i in 1..t_employee.count()
 loop
 sys.dbms_output.put_line(t_employee(i).last_name);
 end loop display_employees;
 end loop process_employees;

 close employee_cur;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

declare
 cursor employee_cur is
 select *
 from employee
 order by employee_id;

 type t_employee_type is table of employee_cur%rowtype;
 t_employee t_employee_type;
 k_bulk_size constant simple_integer := 10;
begin
 open employee_cur;

 <<process_employees>>
 loop
 fetch employee_cur bulk collect into t_employee limit k_bulk_size;
 <<display_employees>>
 for i in 1..t_employee.count()
 loop
 sys.dbms_output.put_line(t_employee(i).last_name);
 end loop display_employees;
 exit process_employees when t_employee.count() <> k_bulk_size;
 end loop process_employees;

 close employee_cur;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 65 of 138

G-4130: Always close locally opened cursors.

REASON

Any cursors left open can consume additional memory space (i.e. SGA) within the database instance, potentially in both
the shared and private SQL pools. Furthermore, failure to explicitly close cursors may also cause the owning session to
exceed its maximum limit of open cursors (as specified by the OPEN_CURSORS database initialization parameter),
potentially resulting in the Oracle error of “ORA-01000: maximum open cursors exceeded”.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body employee_api as
 function department_salary (in_dept_id in department.department_id%type)
 return number is
 cursor department_salary_cur(p_dept_id in department.department_id%type) is
 select sum(salary) as sum_salary
 from employee
 where department_id = p_dept_id;
 r_department_salary department_salary_cur%rowtype;
 begin
 open department_salary_cur(p_dept_id => in_dept_id);
 fetch department_salary_cur into r_department_salary;

 return r_department_salary.sum_salary;
 end department_salary;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body employee_api as
 function department_salary (in_dept_id in department.department_id%type)
 return number is
 cursor department_salary_cur(p_dept_id in department.department_id%type) is
 select sum(salary) as sum_salary
 from employee
 where department_id = p_dept_id;
 r_department_salary department_salary_cur%rowtype;
 begin
 open department_salary_cur(p_dept_id => in_dept_id);
 fetch department_salary_cur into r_department_salary;
 close department_salary_cur;
 return r_department_salary.sum_salary;
 end department_salary;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 66 of 138

G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.

REASON

Oracle provides a variety of cursor attributes (like %found and %rowcount) that can be used to obtain information about
the status of a cursor, either implicit or explicit.

You should avoid inserting any statements between the cursor operation and the use of an attribute against that cursor.
Interposing such a statement can affect the value returned by the attribute, thereby potentially corrupting the logic of your
program.

In the following example, a procedure call is inserted between the DELETE statement and a check for the value of
sql%rowcount , which returns the number of rows modified by that last SQL statement executed in the session. If this

procedure includes a commit / rollback or another implicit cursor the value of sql%rowcount is affected.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

create or replace package body employee_api as
 k_one constant simple_integer := 1;

 procedure process_dept(in_dept_id in departments.department_id%type) is
 begin
 null;
 end process_dept;

 procedure remove_employee (in_employee_id in employee.employee_id%type) is
 l_dept_id employee.department_id%type;
 begin
 delete from employee
 where employee_id = in_employee_id
 returning department_id into l_dept_id;

 process_dept(in_dept_id => l_dept_id);

 if sql%rowcount > k_one then
 -- too many rows deleted.
 rollback;
 end if;
 end remove_employee;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 67 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

create or replace package body employee_api as
 k_one constant simple_integer := 1;

 procedure process_dept(in_dept_id in departments.department_id%type) is
 begin
 null;
 end process_dept;

 procedure remove_employee (in_employee_id in employee.employee_id%type) is
 l_dept_id employee.department_id%type;
 l_deleted_emps simple_integer;
 begin
 delete from employee
 where employee_id = in_employee_id
 returning department_id into l_dept_id;

 l_deleted_emps := sql%rowcount;

 process_dept(in_dept_id => l_dept_id);

 if l_deleted_emps > k_one then
 -- too many rows deleted.
 rollback;
 end if;
 end remove_employee;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 68 of 138

CASE / IF / DECODE / NVL / NVL2 / COALESCE

G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.

REASON

Often if statements containing multiple elsif tend to become complex quickly.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

declare
 l_color varchar2(7 char);
begin
 if l_color = constants.k_red then
 my_package.do_red();
 elsif l_color = constants.k_blue then
 my_package.do_blue();
 elsif l_color = constants.k_black then
 my_package.do_black();
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

declare
 l_color types.color_code_type;
begin
 case l_color
 when constants.k_red then
 my_package.do_red();
 when constants.k_blue then
 my_package.do_blue();
 when constants.k_black then
 my_package.do_black();
 else null;
 end case;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 69 of 138

G-4220: Try to use CASE rather than DECODE.

REASON

DECODE is an ORACLE specific function that can be hard to understand (particularly when not formatted well) and is
restricted to SQL only. The CASE function is much more common has a better readability and may be used within PL/SQL
too.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability, Portability

1
2
3
4
5

select decode(dummy, 'x', 1
 , 'y', 2
 , 'z', 3
 , 0)
 from dual;

1
2
3
4
5
6
7

select case dummy
 when 'x' then 1
 when 'y' then 2
 when 'z' then 3
 else 0
 end
 from dual;

PL/SQL & SQL Coding Guidelines Version 1.0 Page 70 of 138

G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a
SELECT statement.

REASON

The nvl function always evaluates both parameters before deciding which one to use. This can be harmful if parameter 2
is either a function call or a select statement, as it will be executed regardless of whether parameter 1 contains a NULL
value or not.

The coalesce function does not have this drawback.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

Efficiency, Reliability

1
2

select nvl(dummy, my_package.expensive_null(value_in => dummy))
 from dual;

1
2

select coalesce(dummy, my_package.expensive_null(value_in => dummy))
 from dual;

PL/SQL & SQL Coding Guidelines Version 1.0 Page 71 of 138

G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a
SELECT statement.

REASON

The nvl2 function always evaluates all parameters before deciding which one to use. This can be harmful, if parameter 2
or 3 is either a function call or a select statement, as they will be executed regardless of whether parameter 1 contains a
null value or not.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Critical

Efficiency, Reliability

1
2
3

select nvl2(dummy, my_package.expensive_nn(value_in => dummy),
 my_package.expensive_null(value_in => dummy))
 from dual;

1
2
3
4
5
6
7

select case
 when dummy is null then
 my_package.expensive_null(value_in => dummy)
 else
 my_package.expensive_nn(value_in => dummy)
 end
from dual;

PL/SQL & SQL Coding Guidelines Version 1.0 Page 72 of 138

Flow Control

G-4310: Never use GOTO statements in your code.

REASON

Code containing gotos is hard to format. Indentation should be used to show logical structure and gotos have an effect
on logical structure. Trying to use indentation to show the logical structure of a goto, however, is difficult or impossible.

Use of gotos is a matter of religion. In modern languages, you can easily replace nine out of ten gotos with equivalent
structured constructs. In these simple cases, you should replace gotos out of habit. In the hard cases, you can break the
code into smaller routines; use nested ifs; test and retest a status variable; or restructure a conditional. Eliminating the
goto is harder in these cases, but it's good exercise.

EXAMPLE (BAD)

EXAMPLE (BETTER)

Major

Maintainability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

create or replace package body my_package is
 procedure password_check (in_password in varchar2) is
 k_digitarray constant string(10 char) := '0123456789';
 k_lower_bound constant simple_integer := 1;
 k_errno constant simple_integer := -20501;
 k_errmsg constant string(100 char) := 'Password must contain a digit.';
 l_isdigit boolean := false;
 l_password_length pls_integer;
 l_array_length pls_integer;
 begin
 l_password_length := length(in_password);
 l_array_length := length(k_digitarray);

 <<check_digit>>
 for i in k_lower_bound .. l_array_length
 loop
 <<check_pw_char>>
 for j in k_lower_bound .. l_password_length
 loop
 if substr(in_password, j, 1) = substr(k_digitarray, i, 1) then
 l_isdigit := true;
 goto check_other_things;
 end if;
 end loop check_pw_char;
 end loop check_digit;

 <<check_other_things>>
 null;

 if not l_isdigit then
 raise_application_error(k_errno, k_errmsg);
 end if;
 end password_check;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 73 of 138

EXAMPLE (GOOD)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

create or replace package body my_package is
 procedure password_check (in_password in varchar2) is
 k_digitarray constant string(10 char) := '0123456789';
 k_lower_bound constant simple_integer := 1;
 k_errno constant simple_integer := -20501;
 k_errmsg constant string(100 char) := 'Password must contain a digit.';
 l_isdigit boolean := false;
 l_password_length pls_integer;
 l_array_length pls_integer;
 begin
 l_password_length := length(in_password);
 l_array_length := length(k_digitarray);

 <<check_digit>>
 for i in k_lower_bound .. l_array_length
 loop
 <<check_pw_char>>
 for j in k_lower_bound .. l_password_length
 loop
 if substr(in_password, j, 1) = substr(k_digitarray, i, 1) then
 l_isdigit := true;
 exit check_digit; -- early exit condition
 end if;
 end loop check_pw_char;
 end loop check_digit;

 <<check_other_things>>
 null;

 if not l_isdigit then
 raise_application_error(k_errno, k_errmsg);
 end if;
 end password_check;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

create or replace package body my_package is
 procedure password_check (in_password in varchar2) is
 k_digitpattern constant string(2 char) := '\d';
 k_errno constant simple_integer := -20501;
 k_errmsg constant string(100 char) := 'Password must contain a digit.';
 begin
 if not regexp_like(in_password, k_digitpattern)
 then
 raise_application_error(k_errno, k_errmsg);
 end if;
 end password_check;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 74 of 138

G-4320: Always label your loops.

REASON

It's a good alternative for comments to indicate the start and end of a named loop processing.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

declare
 i integer;
 k_min_value constant simple_integer := 1;
 k_max_value constant simple_integer := 10;
 k_increment constant simple_integer := 1;
begin
 i := k_min_value;
 while (i <= k_max_value)
 loop
 i := i + k_increment;
 end loop;

 loop
 exit;
 end loop;

 for i in k_min_value..k_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop;

 for r_employee in (select last_name from employee)
 loop
 sys.dbms_output.put_line(r_employee.last_name);
 end loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 75 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

declare
 i integer;
 k_min_value constant simple_integer := 1;
 k_max_value constant simple_integer := 10;
 k_increment constant simple_integer := 1;
begin
 i := k_min_value;
 <<while_loop>>
 while (i <= k_max_value)
 loop
 i := i + k_increment;
 end loop while_loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop basic_loop;

 <<for_loop>>
 for i in k_min_value..k_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop for_loop;

 <<process_employees>>
 for r_employee in (select last_name
 from employee)
 loop
 sys.dbms_output.put_line(r_employee.last_name);
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 76 of 138

G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk operations.

REASON

It is easier for the reader to see that the complete data set is processed. Using SQL to define the data to be processed is
easier to maintain and typically faster than using conditional processing within the loop.

Since an exit statement is similar to a goto statement, it should be avoided whenever possible.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

declare
 cursor employee_cur is
 select employee_id, last_name
 from employee;
 r_employee employee_cur%rowtype;
begin
 open employee_cur;

 <<output_employee_last_names>>
 loop
 fetch employee_cur into r_employee;
 exit read_employees when employee_cur%notfound;
 sys.dbms_output.put_line(r_employee.last_name);
 end loop output_employee_last_names;

 close employee_cur;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

declare
 cursor employee_cur is
 select employee_id, last_name
 from employee;
begin
 <<output_employee_last_names>>
 for r_employee in employee_cur
 loop
 sys.dbms_output.put_line(r_employee.last_name);
 end loop output_employee_last_names;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 77 of 138

G-4340: Always use a NUMERIC FOR loop to process a dense array.

REASON

It is easier for the reader to see that the complete array is processed.

Since an exit statement is similar to a goto statement, it should be avoided whenever possible.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

declare
 type t_employee_type is varray(10) of employee.employee_id%type;
 t_employee t_employee_type;
 k_himuro constant integer := 118;
 k_livingston constant integer := 177;
 k_min_value constant simple_integer := 1;
 k_increment constant simple_integer := 1;
 i pls_integer;
begin
 t_employee := t_employee_type(k_himuro, k_livingston);
 i := k_min_value;

 <<process_employees>>
 loop
 exit process_employees when i > t_employee.count();
 sys.dbms_output.put_line(t_employee(i));
 i := i + k_increment;
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 type t_employee_type is varray(10) of employee.employee_id%type;
 t_employee t_employee_type;
 k_himuro constant integer := 118;
 k_livingston constant integer := 177;
begin
 t_employee := t_employee_type(k_himuro, k_livingston);

 <<process_employees>>
 for i in 1..t_employee.count()
 loop
 sys.dbms_output.put_line(t_employee(i));
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 78 of 138

G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.

REASON

Doing so will not raise a value_error if the array you are looping through is empty. If you want to use first()..last()
you need to check the array for emptiness beforehand to avoid the raise of value_error .

EXAMPLE (BAD)

EXAMPLE (BETTER)

Raise an unitialized collection error if t_employee is not initialized.

EXAMPLE (GOOD)

Raises neither an error nor checking whether the array is empty. t_employee.count() always returns a number (unless
the array is not initialized). If the array is empty count() returns 0 and therefore the loop will not be entered.

Major

Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 type t_employee_type is table of employee.employee_id%type;
 t_employee t_employee_type := t_employee_type();
begin
 <<process_employees>>
 for i in t_employee.first()..t_employee.last()
 loop
 sys.dbms_output.put_line(t_employee(i)); -- some processing
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 type t_employee_type is table of employee.employee_id%type;
 t_employee t_employee_type := t_employee_type();
begin
 <<process_employees>>
 for i in 1..t_employee.count()
 loop
 sys.dbms_output.put_line(t_employee(i)); -- some processing
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 type t_employee_type is table of employee.employee_id%type;
 t_employee t_employee_type := t_employee_type();
begin
 if t_employee is not null then
 <<process_employees>>
 for i in 1..t_employee.count()
 loop
 sys.dbms_output.put_line(t_employee(i)); -- some processing
 end loop process_employees;
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 79 of 138

G-4360: Always use a WHILE loop to process a loose array.

REASON

When a loose array is processed using a numeric for loop we have to check with all iterations whether the element exist
to avoid a no_data_found exception. In addition, the number of iterations is not driven by the number of elements in the
array but by the number of the lowest/highest element. The more gaps we have, the more superfluous iterations will be
done.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

declare -- raises no_data_found when processing 2nd record
 type t_employee_type is table of employee.employee_id%type;
 t_employee t_employee_type;
 k_rogers constant integer := 134;
 k_matos constant integer := 143;
 k_mcewen constant integer := 158;
 k_index_matos constant integer := 2;
begin
 t_employee := t_employee_type(k_rogers, k_matos, k_mcewen);
 t_employee.delete(k_index_matos);

 if t_employee is not null then
 <<process_employees>>
 for i in 1..t_employee.count()
 loop
 sys.dbms_output.put_line(t_employee(i));
 end loop process_employees;
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

declare
 type t_employee_type is table of employee.employee_id%type;
 t_employee t_employee_type;
 k_rogers constant integer := 134;
 k_matos constant integer := 143;
 k_mcewen constant integer := 158;
 k_index_matos constant integer := 2;
 l_index pls_integer;
begin
 t_employee := t_employee_type(k_rogers, k_matos, k_mcewen);
 t_employee.delete(k_index_matos);

 l_index := t_employee.first();

 <<process_employees>>
 while l_index is not null
 loop
 sys.dbms_output.put_line(t_employee(l_index));
 l_index := t_employee.next(l_index);
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 80 of 138

G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.

REASON

A numeric for loop as well as a while loop and a cursor for loop have defined loop boundaries. If you are not able to exit
your loop using those loop boundaries, then a basic loop is the right loop to choose.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

declare
 i integer;
 k_min_value constant simple_integer := 1;
 k_max_value constant simple_integer := 10;
 k_increment constant simple_integer := 1;
begin
 i := k_min_value;
 <<while_loop>>
 while (i <= k_max_value)
 loop
 i := i + k_increment;
 exit while_loop when i > k_max_value;
 end loop while_loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop basic_loop;

 <<for_loop>>
 for i in k_min_value..k_max_value
 loop
 null;
 exit for_loop when i = k_max_value;
 end loop for_loop;

 <<process_employees>>
 for r_employee in (select last_name
 from employee)
 loop
 sys.dbms_output.put_line(r_employee.last_name);
 null; -- some processing
 exit process_employees;
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 81 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

declare
 i integer;
 k_min_value constant simple_integer := 1;
 k_max_value constant simple_integer := 10;
 k_increment constant simple_integer := 1;
begin
 i := k_min_value;
 <<while_loop>>
 while (i <= k_max_value)
 loop
 i := i + k_increment;
 end loop while_loop;

 <<basic_loop>>
 loop
 exit basic_loop;
 end loop basic_loop;

 <<for_loop>>
 for i in k_min_value..k_max_value
 loop
 sys.dbms_output.put_line(i);
 end loop for_loop;

 <<process_employees>>
 for r_employee in (select last_name
 from employee)
 loop
 sys.dbms_output.put_line(r_employee.last_name); -- some processing
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 82 of 138

G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.

REASON

If you need to use an exit statement use its full semantic to make the code easier to understand and maintain. There is
simply no need for an additional IF statement.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 k_first_year constant pls_integer := 1900;
begin
 <<process_employees>>
 loop
 my_package.some_processing();

 if extract(year from sysdate) > k_first_year then
 exit process_employees;
 end if;

 my_package.some_further_processing();
 end loop process_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 k_first_year constant pls_integer := 1900;
begin
 <<process_employees>>
 loop
 my_package.some_processing();

 exit process_employees when extract(year from sysdate) > k_first_year;

 my_package.some_further_processing();
 end loop process_employees;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 83 of 138

G-4380 Try to label your EXIT WHEN statements.

REASON

It's a good alternative for comments, especially for nested loops to name the loop to exit.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

declare
 k_init_loop constant simple_integer := 0;
 k_increment constant simple_integer := 1;
 k_exit_value constant simple_integer := 3;
 k_outer_text constant types.short_text_type := 'outer loop counter is ';
 k_inner_text constant types.short_text_type := ' inner loop counter is ';
 l_outerloop pls_integer;
 l_innerloop pls_integer;
begin
 l_outerloop := k_init_loop;
 <<outerloop>>
 loop
 l_innerloop := k_init_loop;
 l_outerloop := nvl(l_outerloop,k_init_loop) + k_increment;
 <<innerloop>>
 loop
 l_innerloop := nvl(l_innerloop, k_init_loop) + k_increment;
 sys.dbms_output.put_line(k_outer_text || l_outerloop ||
 k_inner_text || l_innerloop);

 exit when l_innerloop = k_exit_value;
 end loop innerloop;

 exit when l_innerloop = k_exit_value;
 end loop outerloop;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 84 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

declare
 k_init_loop constant simple_integer := 0;
 k_increment constant simple_integer := 1;
 k_exit_value constant simple_integer := 3;
 k_outer_text constant types.short_text_type := 'outer loop counter is ';
 k_inner_text constant types.short_text_type := ' inner loop counter is ';
 l_outerloop pls_integer;
 l_innerloop pls_integer;
begin
 l_outerloop := k_init_loop;
 <<outerloop>>
 loop
 l_innerloop := k_init_loop;
 l_outerloop := nvl(l_outerloop,k_init_loop) + k_increment;
 <<innerloop>>
 loop
 l_innerloop := nvl(l_innerloop, k_init_loop) + k_increment;
 sys.dbms_output.put_line(k_outer_text || l_outerloop ||
 k_inner_text || l_innerloop);

 exit outerloop when l_innerloop = k_exit_value;
 end loop innerloop;
 end loop outerloop;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 85 of 138

G-4385: Never use a cursor for loop to check whether a cursor returns data.

REASON

You might process more data than required, which leads to bad performance.

Also, check out rule G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row. [/docs/4-
language-usage/8-patterns/1-checking-the-number-of-rows/g-8110.md]

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

declare
 l_employee_found boolean := false;
 cursor employee_cur is
 select employee_id, last_name
 from employee;
 r_employee employee_cur%rowtype;
begin
 <<check_employees>>
 for r_employee in employee_cur
 loop
 l_employee_found := true;
 end loop check_employees;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 l_employee_found boolean := false;
 cursor employee_cur is
 select employee_id, last_name
 from employee;
 r_employee employee_cur%rowtype;
begin
 open employee_cur;
 fetch employee_cur into r_employee;
 l_employee_found := employee_cur%found;
 close employee_cur;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 86 of 138

file:///docs/4-language-usage/8-patterns/1-checking-the-number-of-rows/g-8110.md

G-4390: Avoid use of unreferenced FOR loop indexes.

REASON

If the loop index is used for anything but traffic control inside the loop, this is one of the indicators that a numeric FOR
loop is being used incorrectly. The actual body of executable statements completely ignores the loop index. When that is
the case, there is a good chance that you do not need the loop at all.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

declare
 l_row pls_integer;
 l_value pls_integer;
 k_lower_bound constant simple_integer := 1;
 k_upper_bound constant simple_integer := 5;
 k_row_incr constant simple_integer := 1;
 k_value_incr constant simple_integer := 10;
 k_delimiter constant types.short_text_type := ' ';
 k_first_value constant simple_integer := 100;
begin
 l_row := k_lower_bound;
 l_value := k_first_value;
 <<for_loop>>
 for i in k_lower_bound .. k_upper_bound
 loop
 sys.dbms_output.put_line(l_row || k_delimiter || l_value);
 l_row := l_row + k_row_incr;
 l_value := l_value + k_value_incr;
 end loop for_loop;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 k_lower_bound constant simple_integer := 1;
 k_upper_bound constant simple_integer := 5;
 k_value_incr constant simple_integer := 10;
 k_delimiter constant types.short_text_type := ' ';
 k_first_value constant simple_integer := 100;
begin
 <<for_loop>>
 for i in k_lower_bound .. k_upper_bound
 loop
 sys.dbms_output.put_line(i || k_delimiter ||
 to_char(k_first_value + i * k_value_incr));
 end loop for_loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 87 of 138

G-4395: Avoid hard-coded upper or lower bound values with FOR loops.

REASON

Your loop statement uses a hard-coded value for either its upper or lower bounds. This creates a "weak link" in your
program because it assumes that this value will never change. A better practice is to create a named constant (or
function) and reference this named element instead of the hard-coded value.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Changeability, Maintainability

1
2
3
4
5
6
7
8

begin
 <<output_loop>>
 for i in 1..5
 loop
 sys.dbms_output.put_line(i);
 end loop output_loop;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

declare
 k_lower_bound constant simple_integer := 1;
 k_upper_bound constant simple_integer := 5;
begin
 <<output_loop>>
 for i in k_lower_bound..k_upper_bound
 loop
 sys.dbms_output.put_line(i);
 end loop output_loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 88 of 138

Exception Handling

G-5010: Always use an error/logging framework for your application.

Reason

Having a framework to raise/handle/log your errors allows you to easily avoid duplicate application error numbers and
having different error messages for the same type of error.

This kind of framework should include

Logging (different channels like table, mail, file, etc. if needed)

Error Raising

Multilanguage support if needed

Translate ORACLE error messages to a user friendly error text

Error repository

By far, the best logging framework available is Logger from OraOpenSource. [https://github.com/OraOpenSource/Logger]

Example (bad)

Example (good)

Critical

Reliability, Reusability, Testability

1
2
3
4
5
6

begin
 sys.dbms_output.put_line('start');
 -- some processing
 sys.dbms_output.put_line('end');
end;
/

1
2
3
4
5
6
7
8
9

declare
 -- see https://github.com/oraopensource/logger
 l_scope logger_logs.scope%type := 'demo';
begin
 logger.log('start', l_scope);
 -- some processing
 logger.log('end', l_scope);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 89 of 138

https://github.com/OraOpenSource/Logger

G-5020: Never handle unnamed exceptions using the error number.

Reason

When literals are used for error numbers the reader needs the error message manual to unterstand what is going on.
Commenting the code or using constants is an option, but it is better to use named exceptions instead, because it ensures
a certain level of consistency which makes maintenance easier.

Example (bad)

Example (good)

Critical

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

declare
 k_no_data_found constant integer := -1;
begin
 my_package.some_processing(); -- some code which raises an exception
exception
 when too_many_rows then
 my_package.some_further_processing();
 when others then
 if sqlcode = k_no_data_found then
 null;
 end if;
end;
/

1
2
3
4
5
6
7
8
9

begin
 my_package.some_processing(); -- some code which raises an exception
exception
 when too_many_rows then
 my_package.some_further_processing();
 when no_data_found then
 null; -- handle no_data_found
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 90 of 138

G-5030: Never assign predefined exception names to user defined exceptions.

Reason

This is error-prone because your local declaration overrides the global declaration. While it is technically possible to use
the same names, it causes confusion for others needing to read and maintain this code. Additionally, you will need to be
very careful to use the prefix standard in front of any reference that needs to use Oracle’s default exception behavior.

Example (bad)

Using the code below, we are not able to handle the no_data_found exception raised by the select statement as we have
overwritten that exception handler. In addition, our exception handler doesn't have an exception number assigned, which
should be raised when the SELECT statement does not find any rows.

Example (good)

Blocker

Reliability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

declare
 l_dummy dual.dummy%type;
 no_data_found exception;
 k_rownum constant simple_integer := 0;
 k_no_data_found constant types.short_text_type := 'no_data_found';
begin
 select dummy
 into l_dummy
 from dual
 where rownum = k_rownum;

 if l_dummy is null then
 raise no_data_found;
 end if;
exception
 when no_data_found then
 sys.dbms_output.put_line(k_no_data_found);
end;
/

Error report -
ORA-01403: no data found
ORA-06512: at line 5
01403. 00000 - "no data found"
*Cause: No data was found from the objects.
*Action: There was no data from the objects which may be due to end of fetch.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 91 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

declare
 l_dummy dual.dummy%type;
 empty_value exception;
 k_rownum constant simple_integer := 0;
 k_empty_value constant types.short_text_type := 'empty_value';
 k_no_data_found constant types.short_text_type := 'no_data_found';
begin
 select dummy
 into l_dummy
 from dual
 where rownum = k_rownum;

 if l_dummy is null then
 raise empty_value;
 end if;
exception
 when empty_value then
 sys.dbms_output.put_line(k_empty_value);
 when no_data_found then
 sys.dbms_output.put_line(k_no_data_found);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 92 of 138

G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other specific
handlers.

Reason

There is not necessarily anything wrong with using when others , but it can cause you to "lose" error information unless
your handler code is relatively sophisticated. Generally, you should use when others to grab any and every error only
after you have thought about your executable section and decided that you are not able to trap any specific exceptions. If
you know, on the other hand, that a certain exception might be raised, include a handler for that error. By declaring two
different exception handlers, the code more clearly states what we expect to have happen and how we want to handle the
errors. That makes it easier to maintain and enhance. We also avoid hard-coding error numbers in checks against
sqlcode .

Example (bad)

Example (good)

Major

Reliability

1
2
3
4
5
6
7

begin
 my_package.some_processing();
exception
 when others then
 my_package.some_further_processing();
end;
/

1
2
3
4
5
6
7

begin
 my_package.some_processing();
exception
 when dup_val_on_index then
 my_package.some_further_processing();
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 93 of 138

G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded
20nnn error number or hard-coded message.

Reason

If you are not very organized in the way you allocate, define and use the error numbers between 20999 and 20000 (those
reserved by Oracle for its user community), it is very easy to end up with conflicting usages. You should assign these error
numbers to named constants and consolidate all definitions within a single package. When you call
raise_application_error , you should reference these named elements and error message text stored in a table. Use

your own raise procedure in place of explicit calls to raise_application_error . If you are raising a "system" exception
like no_data_found , you must use RAISE. However, when you want to raise an application-specific error, you use
raise_application_error . If you use the latter, you then have to provide an error number and message. This leads to

unnecessary and damaging hard-coded values. A more fail-safe approach is to provide a predefined raise procedure that
automatically checks the error number and determines the correct way to raise the error.

Example (bad)

Example (good)

Major

Changeability, Maintainability

1
2
3
4

begin
 raise_application_error(-20501,'invalid employee_id');
end;
/

1
2
3
4

begin
 errors.raise(in_error => errors.k_invalid_employee_id);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 94 of 138

G-5060: Avoid unhandled exceptions.

Reason

This may be your intention, but you should review the code to confirm this behavior.

If you are raising an error in a program, then you are clearly predicting a situation in which that error will occur. You should
consider including a handler in your code for predictable errors, allowing for a graceful and informative failure. After all, it
is much more difficult for an enclosing block to be aware of the various errors you might raise and more importantly, what
should be done in response to the error.

The form that this failure takes does not necessarily need to be an exception. When writing functions, you may well decide
that in the case of certain exceptions, you will want to return a value such as NULL, rather than allow an exception to
propagate out of the function.

Example (bad)

Example (good)

Major

Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

create or replace package body department_api is
 function name_by_id (in_id in department.department_id%type)
 return department.department_name%type is
 l_department_name department.department_name%type;
 begin
 select department_name
 into l_department_name
 from department
 where department_id = in_id;

 return l_department_name;
 end name_by_id;
end department_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body department_api is
 function name_by_id (in_id in department.department_id%type)
 return department.department_name%type is
 l_department_name department.department_name%type;
 begin
 select department_name
 into l_department_name
 from department
 where department_id = in_id;

 return l_department_name;
 exception
 when no_data_found then return null;
 when too_many_rows then raise;
 end name_by_id;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 95 of 138

G-5070: Avoid using Oracle predefined exceptions.

Reason

You have raised an exception whose name was defined by Oracle. While it is possible that you have a good reason for
"using" one of Oracle's predefined exceptions, you should make sure that you would not be better off declaring your own
exception and raising that instead.

If you decide to change the exception you are using, you should apply the same consideration to your own exceptions.
Specifically, do not "re-use" exceptions. You should define a separate exception for each error condition, rather than use
the same exception for different circumstances.

Being as specific as possible with the errors raised will allow developers to check for, and handle, the different kinds of
errors the code might produce.

Example (bad)

Example (good)

Critical

Reliability

1
2
3
4

begin
 raise no_data_found;
end;
/

1
2
3
4
5
6

declare
 my_exception exception;
begin
 raise my_exception;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 96 of 138

Dynamic SQL

G-6010: Always use a character variable to execute dynamic SQL.

Reason

Having the executed statement in a variable makes it easier to debug your code (e.g. by logging the statement that failed).

Example (bad)

Example (good)

Major

Maintainability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

procedure trx_to_collection(
 p_appendix_id in px_mandate_appendix.id%TYPE
)
is
 k_trx_collection constant varchar2(10) := 'TRX_LINES';

 l_param_names apex_application_global.vc_arr2;
 l_param_values apex_application_global.vc_arr2;
begin
 l_param_names(l_param_names.count + 1) := 'APPENDIX_ID';
 l_param_values(l_param_names.count) := p_appendix_id;

 apex_collection.create_collection_from_query_b
 (
 p_collection_name => k_trx_collection
 , p_query =>
 q'[select t.id, 'Y' include_flag, 'TRX' type
 from px_billing_transactions t
 where t.appendix_id = :APPENDIX_ID
 and t.pending_invoice_flag = 'Y']'
 , p_names => l_param_names
 , p_values => l_param_values
);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 97 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

procedure trx_to_collection(
 p_appendix_id in px_mandate_appendix.id%TYPE
)
is
 k_trx_collection constant varchar2(10) := 'TRX_LINES';

 k_sql constant types.big_string_type :=
 q'[select t.id, 'Y' include_flag, 'TRX' type
 from px_billing_transactions t
 where t.appendix_id = :APPENDIX_ID
 and t.pending_invoice_flag = 'Y']';

 l_param_names apex_application_global.vc_arr2;
 l_param_values apex_application_global.vc_arr2;
begin
 l_param_names(l_param_names.count + 1) := 'APPENDIX_ID';
 l_param_values(l_param_names.count) := p_appendix_id;

 apex_collection.create_collection_from_query_b
 (
 p_collection_name => k_trx_collection
 , p_query => k_sql
 , p_names => l_param_names
 , p_values => l_param_values
);

end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 98 of 138

G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML
statements rather than the USING clause.

Reason

When a dynamic insert , update , or delete statement has a returning clause, output bind arguments can go in the
returning into clause or in the using clause.

You should use the returning into clause for values returned from a DML operation. Reserve out and in out bind
variables for dynamic PL/SQL blocks that return values in PL/SQL variables.

Example (bad)

Example (good)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body employee_api is
 procedure upd_salary (in_employee_id in employee.employee_id%type
 ,in_increase_pct in types.percentage
 ,out_new_salary out employee.salary%type)
 is
 k_sql_stmt constant types.big_string_type :=
 'update employee set salary = salary + (salary / 100 * :1)
 where employee_id = :2
 returning salary into :3';
 begin
 execute immediate k_sql_stmt
 using in_increase_pct, in_employee_id, out out_new_salary;
 end upd_salary;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body employee_api is
 procedure upd_salary (in_employee_id in employee.employee_id%type
 ,in_increase_pct in types.percentage
 ,out_new_salary out employee.salary%type)
 is
 k_sql_stmt constant types.big_string_type :=
 'update employee set salary = salary + (salary / 100 * :1)
 where employee_id = :2
 returning salary into :3';
 begin
 execute immediate k_sql_stmt
 using in_increase_pct, in_employee_id
 returning into out_new_salary;
 end upd_salary;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 99 of 138

Stored Objects

General

G-7110: Try to use named notation when calling program units.

REASON

Named notation makes sure that changes to the signature of the called program unit do not affect your call.

This is not needed for standard functions like (to_char , to_date , nvl , round , etc.) but should be followed for any other
stored object having more than one parameter.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Changeability, Maintainability

1
2
3
4
5
6
7

declare
 r_employee employee%rowtype;
 k_id constant employee.employee_id%type := 107;
begin
 employee_api.employee_by_id(r_employee, k_id);
end;
/

1
2
3
4
5
6
7

declare
 r_employee employee%rowtype;
 k_id constant employee.employee_id%type := 107;
begin
 employee_api.employee_by_id(out_row => r_employee, in_employee_id => k_id);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 100 of 138

G-7120 Always add the name of the program unit to its end keyword.

REASON

It's a good alternative for comments to indicate the end of program units, especially if they are lengthy or nested.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body employee_api is
 function employee_by_id (in_employee_id in employee.employee_id%type)
 return employee%rowtype is
 r_employee employee%rowtype;
 begin
 select *
 into r_employee
 from employee
 where employee_id = in_employee_id;

 return r_employee;
 exception
 when no_data_found then
 null;
 when too_many_rows then
 raise;
 end;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body employee_api is
 function employee_by_id (in_employee_id in employee.employee_id%type)
 return employee%rowtype is
 r_employee employee%rowtype;
 begin
 select *
 into r_employee
 from employee
 where employee_id = in_employee_id;

 return r_employee;
 exception
 when no_data_found then
 null;
 when too_many_rows then
 raise;
 end employee_by_id;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 101 of 138

G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program unit.

REASON

Local procedures and functions offer an excellent way to avoid code redundancy and make your code more readable (and
thus more maintainable). Your local program refers, however, an external data structure, i.e., a variable that is declared
outside of the local program. Thus, it is acting as a global variable inside the program.

This external dependency is hidden, and may cause problems in the future. You should instead add a parameter to the
parameter list of this program and pass the value through the list. This technique makes your program more reusable and
avoids scoping problems, i.e. the program unit is less tied to particular variables in the program. In addition, unit
encapsulation makes maintenance a lot easier and cheaper.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

create or replace package body employee_api is
 procedure calc_salary (in_employee_id in employee.employee_id%type) is
 r_employee employee%rowtype;

 function commission return number is
 l_commission employee.salary%type := 0;
 begin
 if r_employee.commission_pct is not null
 then
 l_commission := r_employee.salary * r_employee.commission_pct;
 end if;

 return l_commission;
 end commission;
 begin
 select *
 into r_employee
 from employee
 where employee_id = in_employee_id;

 sys.dbms_output.put_line(r_employee.salary + commission());
 exception
 when no_data_found then
 null;
 when too_many_rows then
 null;
 end calc_salary;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 102 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

create or replace package body employee_api is
 procedure calc_salary (in_employee_id in employee.employee_id%type) is
 r_employee employee%rowtype;

 function commission (in_salary in employee.salary%type
 ,in_comm_pct in employee.commission_pct%type)
 return number is
 l_commission employee.salary%type := 0;
 begin
 if in_comm_pct is not null then
 l_commission := in_salary * in_comm_pct;
 end if;

 return l_commission;
 end commission;
 begin
 select *
 into r_employee
 from employee
 where employee_id = in_employee_id;

 sys.dbms_output.put_line(
 r_employee.salary + commission(in_salary => r_employee.salary
 ,in_comm_pct => r_employee.commission_pct)
);
 exception
 when no_data_found then
 null;
 when too_many_rows then
 null;
 end calc_salary;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 103 of 138

G-7140: Always ensure that locally defined procedures or functions are referenced.

REASON

This can occur as the result of changes to code over time, but you should make sure that this situation does not reflect a
problem. And you should remove the declaration to avoid maintenance errors in the future.

You should go through your programs and remove any part of your code that is no longer used. This is a relatively
straightforward process for variables and named constants. Simply execute searches for a variable's name in that
variable's scope. If you find that the only place it appears is in its declaration, delete the declaration.

There is never a better time to review all the steps you took, and to understand the reasons you took them, then
immediately upon completion of your program. If you wait, you will find it particularly difficult to remember those parts of
the program that were needed at one point, but were rendered unnecessary in the end.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package body my_package is
 procedure my_procedure is
 function my_func return number is
 k_true constant integer := 1;
 begin
 return k_true;
 end my_func;
 begin
 null;
 end my_procedure;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package body my_package is
 procedure my_procedure is
 function my_func return number is
 k_true constant integer := 1;
 begin
 return k_true;
 end my_func;
 begin
 sys.dbms_output.put_line(my_func());
 end my_procedure;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 104 of 138

G-7150: Try to remove unused parameters.

REASON

You should go through your programs and remove any parameter that is no longer used.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency, Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

create or replace package body department_api is
 function name_by_id (in_department_id in department.department_id%type
 ,in_manager_id in department.manager_id%type)
 return department.department_name%type is
 l_department_name department.department_name%type;
 begin
 <<find_department>>
 begin
 select department_name
 into l_department_name
 from department
 where department_id = in_department_id;
 exception
 when no_data_found or too_many_rows then
 l_department_name := null;
 end find_department;

 return l_department_name;
 end name_by_id;
end department_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

create or replace package body department_api is
 function name_by_id (in_department_id in department.department_id%type)
 return department.department_name%type is
 l_department_name department.department_name%type;
 begin
 <<find_department>>
 begin
 select department_name
 into l_department_name
 from department
 where department_id = in_department_id;
 exception
 when no_data_found or too_many_rows then
 l_department_name := null;
 end find_department;

 return l_department_name;
 end name_by_id;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 105 of 138

Packages

G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same context.

REASON

The entire package is loaded into memory when the package is called the first time. To optimize memory consumption
and keep load time small packages should be kept small but include components that are used together.

Minor

Efficiency, Maintainability

PL/SQL & SQL Coding Guidelines Version 1.0 Page 106 of 138

G-7220: Always use forward declaration for private functions and procedures.

REASON

Having forward declarations allows you to order the functions and procedures of the package in a reasonable way.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Changeability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

create or replace package department_api is
 procedure del (in_department_id in department.department_id%type);
end department_api;
/

create or replace package body department_api is
 function does_exist (in_department_id in department.department_id%type)
 return boolean is
 l_return pls_integer;
 begin
 <<check_row_exists>>
 begin
 select 1
 into l_return
 from department
 where department_id = in_department_id;
 exception
 when no_data_found or too_many_rows then
 l_return := 0;
 end check_row_exists;

 return l_return = 1;
 end does_exist;

 procedure del (in_department_id in department.department_id%type) is
 begin
 if does_exist(in_department_id) then
 null;
 end if;
 end del;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 107 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

create or replace package department_api is
 procedure del (in_department_id in department.department_id%type);
end department_api;
/

create or replace package body department_api is
 function does_exist (in_department_id in department.department_id%type)
 return boolean;

 procedure del (in_department_id in department.department_id%type) is
 begin
 if does_exist(in_department_id) then
 null;
 end if;
 end del;

 function does_exist (in_department_id in department.department_id%type)
 return boolean is
 l_return pls_integer;
 k_exists constant pls_integer := 1;
 k_something_wrong constant pls_integer := 0;
 begin
 <<check_row_exists>>
 begin
 select k_exists
 into l_return
 from department
 where department_id = in_department_id;
 exception
 when no_data_found or too_many_rows then
 l_return := k_something_wrong;
 end check_row_exists;

 return l_return = k_exists;
 end does_exist;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 108 of 138

G-7230: Avoid declaring global variables public.

REASON

You should always declare package-level data inside the package body. You can then define "get and set" methods
(functions and procedures, respectively) in the package specification to provide controlled access to that data. By doing
so you can guarantee data integrity, you can change your data structure implementation, and also track access to those
data structures.

Data structures (scalar variables, collections, cursors) declared in the package specification (not within any specific
program) can be referenced directly by any program running in a session with EXECUTE rights to the package.

Instead, declare all package-level data in the package body and provide "get and set" methods - a function to get the value
and a procedure to set the value - in the package specification. Developers then can access the data using these methods
- and will automatically follow all rules you set upon data modification.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

create or replace package employee_api as
 k_min_increase constant types.sal_increase_type := 0.01;
 k_max_increase constant types.sal_increase_type := 0.5;
 g_salary_increase types.sal_increase_type := k_min_increase;

 procedure set_salary_increase (in_increase in types.sal_increase_type);
 function salary_increase return types.sal_increase_type;
end employee_api;
/

create or replace package body employee_api as
 procedure set_salary_increase (in_increase in types.sal_increase_type) is
 begin
 g_salary_increase := greatest(least(in_increase,k_max_increase)
 ,k_min_increase);
 end set_salary_increase;

 function salary_increase return types.sal_increase_type is
 begin
 return g_salary_increase;
 end salary_increase;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 109 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

create or replace package employee_api as
 procedure set_salary_increase (in_increase in types.sal_increase_type);
 function salary_increase return types.sal_increase_type;
end employee_api;
/

create or replace package body employee_api as
 g_salary_increase types.sal_increase_type(4,2);

 procedure init;

 procedure set_salary_increase (in_increase in types.sal_increase_type) is
 begin
 g_salary_increase := greatest(least(in_increase
 ,constants.max_salary_increase())
 ,constants.min_salary_increase());
 end set_salary_increase;

 function salary_increase return types.sal_increase_type is
 begin
 return g_salary_increase;
 end salary_increase;

 procedure init
 is
 begin
 g_salary_increase := constants.min_salary_increase();
 end init;
begin
 init();
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 110 of 138

G-7240: Avoid using an IN OUT parameter as IN or OUT only.

REASON

By showing the mode of parameters, you help the reader. If you do not specify a parameter mode, the default mode is in .
Explicitly showing the mode indication of all parameters is a more assertive action than simply taking the default mode.
Anyone reviewing the code later will be more confident that you intended the parameter mode to be in / out .

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency, Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

create or replace package body employee_up is
 procedure rcv_emp (io_first_name in out employee.first_name%type
 ,io_last_name in out employee.last_name%type
 ,io_email in out employee.email%type
 ,io_phone_number in out employee.phone_number%type
 ,io_hire_date in out employee.hire_date%type
 ,io_job_id in out employee.job_id%type
 ,io_salary in out employee.salary%type
 ,io_commission_pct in out employee.commission_pct%type
 ,io_manager_id in out employee.manager_id%type
 ,io_department_id in out employee.department_id%type
 ,in_wait integer) is
 l_status pls_integer;
 k_pipe_name constant string(6 char) := 'mypipe';
 k_ok constant pls_integer := 1;
 begin
 -- receive next message and unpack for each column.
 l_status := sys.dbms_pipe.receive_message(pipename => k_pipe_name
 ,timeout => in_wait);
 if l_status = k_ok then
 sys.dbms_pipe.unpack_message (io_first_name);
 sys.dbms_pipe.unpack_message (io_last_name);
 sys.dbms_pipe.unpack_message (io_email);
 sys.dbms_pipe.unpack_message (io_phone_number);
 sys.dbms_pipe.unpack_message (io_hire_date);
 sys.dbms_pipe.unpack_message (io_job_id);
 sys.dbms_pipe.unpack_message (io_salary);
 sys.dbms_pipe.unpack_message (io_commission_pct);
 sys.dbms_pipe.unpack_message (io_manager_id);
 sys.dbms_pipe.unpack_message (io_department_id);
 end if;
 end rcv_emp;
end employee_up;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 111 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

create or replace package body employee_up is
 procedure rcv_emp (out_first_name out employee.first_name%type
 ,out_last_name out employee.last_name%type
 ,out_email out employee.email%type
 ,out_phone_number out employee.phone_number%type
 ,out_hire_date out employee.hire_date%type
 ,out_job_id out employee.job_id%type
 ,out_salary out employee.salary%type
 ,out_commission_pct out employee.commission_pct%type
 ,out_manager_id out employee.manager_id%type
 ,out_department_id out employee.department_id%type
 ,in_wait in integer) is
 l_status pls_integer;
 k_pipe_name constant string(6 char) := 'mypipe';
 k_ok constant pls_integer := 1;
 begin
 -- receive next message and unpack for each column.
 l_status := sys.dbms_pipe.receive_message(pipename => k_pipe_name
 ,timeout => in_wait);
 if l_status = k_ok then
 sys.dbms_pipe.unpack_message (out_first_name);
 sys.dbms_pipe.unpack_message (out_last_name);
 sys.dbms_pipe.unpack_message (out_email);
 sys.dbms_pipe.unpack_message (out_phone_number);
 sys.dbms_pipe.unpack_message (out_hire_date);
 sys.dbms_pipe.unpack_message (out_job_id);
 sys.dbms_pipe.unpack_message (out_salary);
 sys.dbms_pipe.unpack_message (out_commission_pct);
 sys.dbms_pipe.unpack_message (out_manager_id);
 sys.dbms_pipe.unpack_message (out_department_id);
 end if;
 end rcv_emp;
end employee_up;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 112 of 138

G-7250: Always use NOCOPY when appropriate

REASON

When we pass OUT or IN OUT parameters in PL/SQL the Oracle Database supports two methods of passing data: By
Value and By Reference.

The default, By Value, will copy all the data passed into a temporary buffer. This buffer is passed to the procedure and
used during the life of the procedure. Then when processing is complete, the data in the buffer is copied to the original
variable.

Passing By Reference is achieved by the NOCOPY hint, and, in contrast, it will pass a reference to the variable's data. Think
of a pointer in the C language. This means that no temporary buffer is required. When passing significant amounts of
data, the effects of passing values by reference can be significant.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

procedure add_message(
 p_msg in out message_tbl_type
 , p_message_text in varchar2
 , p_severity in varchar2 default 'E'
)
is
 l_index pls_integer;
begin

 l_index := p_msg.count + 1;
 p_msg(l_index).message_text := p_message_text;
 p_msg(l_index).severity := p_severity;

end add_message;

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

procedure add_message(
 p_msg in out nocopy message_tbl_type
 , p_message_text in varchar2
 , p_severity in varchar2 default 'E'
)
is
 l_index pls_integer;
begin

 l_index := p_msg.count + 1;
 p_msg(l_index).message_text := p_message_text;
 p_msg(l_index).severity := p_severity;

end add_message;

PL/SQL & SQL Coding Guidelines Version 1.0 Page 113 of 138

Procedures

G-7310: Avoid standalone procedures – put your procedures in packages.

REASON

Use packages to structure your code, combine procedures and functions which belong together.

Package bodies may be changed and compiled without invalidating other packages. This is major advantage compared to
standalone procedures and functions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

1
2
3
4
5

create or replace procedure my_procedure is
begin
 null;
end my_procedure;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package my_package is
 procedure my_procedure;
end my_package;
/

create or replace package body my_package is
 procedure my_procedure is
 begin
 null;
 end my_procedure;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 114 of 138

G-7320: Avoid using RETURN statements in a PROCEDURE.

REASON

Use of the return statement is legal within a procedure in PL/SQL, but it is very similar to a goto , which means you end
up with poorly structured code that is hard to debug and maintain.

A good general rule to follow as you write your PL/SQL programs is "one way in and one way out". In other words, there
should be just one way to enter or call a program, and there should be one way out, one exit path from a program (or loop)
on successful termination. By following this rule, you end up with code that is much easier to trace, debug, and maintain.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body my_package is
 procedure my_procedure is
 l_idx simple_integer := 1;
 k_modulo constant simple_integer := 7;
 begin
 <<mod7_loop>>
 loop
 if mod(l_idx,k_modulo) = 0 then
 return;
 end if;

 l_idx := l_idx + 1;
 end loop mod7_loop;
 end my_procedure;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

create or replace package body my_package is
 procedure my_procedure is
 l_idx simple_integer := 1;
 k_modulo constant simple_integer := 7;
 begin
 <<mod7_loop>>
 loop
 exit mod7_loop when mod(l_idx,k_modulo) = 0;

 l_idx := l_idx + 1;
 end loop mod7_loop;
 end my_procedure;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 115 of 138

Functions

G-7410: Avoid standalone functions – put your functions in packages.

REASON

Use packages to structure your code, combine procedures and functions which belong together.

Package bodies may be changed and compiled without invalidating other packages. This is major advantage compared to
standalone procedures and functions.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Maintainability

1
2
3
4
5

create or replace function my_function return varchar2 is
begin
 return null;
end my_function;
/

1
2
3
4
5
6
7

create or replace package body my_package is
 function my_function return varchar2 is
 begin
 return null;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 116 of 138

G-7420: Always make the RETURN statement the last statement of your function.

REASON

The reader expects the return statement to be the last statement of a function.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create or replace package body my_package is
 function my_function (in_from in pls_integer
 , in_to in pls_integer) return pls_integer is
 l_ret pls_integer;
 begin
 l_ret := in_from;
 <<for_loop>>
 for i in in_from .. in_to
 loop
 l_ret := l_ret + i;
 if i = in_to then
 return l_ret;
 end if;
 end loop for_loop;
 end my_function;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body my_package is
 function my_function (in_from in pls_integer
 , in_to in pls_integer) return pls_integer is
 l_ret pls_integer;
 begin
 l_ret := in_from;
 <<for_loop>>
 for i in in_from .. in_to
 loop
 l_ret := l_ret + i;
 end loop for_loop;
 return l_ret;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 117 of 138

G-7430: Try to use no more than one RETURN statement within a function.

REASON

A function should have a single point of entry as well as a single exit-point.

EXAMPLE (BAD)

EXAMPLE (BETTER)

EXAMPLE (GOOD)

Major

Will have a medium/potential impact on the maintenance cost. Maintainability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

create or replace package body my_package is
 function my_function (in_value in pls_integer) return boolean is
 k_yes constant pls_integer := 1;
 begin
 if in_value = k_yes then
 return true;
 else
 return false;
 end if;
 end my_function;
end my_package;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body my_package is
 function my_function (in_value in pls_integer) return boolean is
 k_yes constant pls_integer := 1;
 l_ret boolean;
 begin
 if in_value = k_yes then
 l_ret := true;
 else
 l_ret := false;
 end if;

 return l_ret;
 end my_function;
end my_package;
/

1
2
3
4
5
6
7
8

create or replace package body my_package is
 function my_function (in_value in pls_integer) return boolean is
 k_yes constant pls_integer := 1;
 begin
 return in_value = k_yes;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 118 of 138

G-7440: Never use OUT parameters to return values from a function.

REASON

A function should return all its data through the RETURN clause. Having an OUT parameter prohibits usage of a function
within SQL statements.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reusability

1
2
3
4
5
6
7
8

create or replace package body my_package is
 function my_function (out_date out date) return boolean is
 begin
 out_date := sysdate;
 return true;
 end my_function;
end my_package;
/

1
2
3
4
5
6
7

create or replace package body my_package is
 function my_function return date is
 begin
 return sysdate;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 119 of 138

G-7450: Never return a NULL value from a BOOLEAN function.

REASON

If a boolean function returns null, the caller has do deal with it. This makes the usage cumbersome and more error-prone.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Reliability, Testability

1
2
3
4
5
6
7

create or replace package body my_package is
 function my_function return boolean is
 begin
 return null;
 end my_function;
end my_package;
/

1
2
3
4
5
6
7

create or replace package body my_package is
 function my_function return boolean is
 begin
 return true;
 end my_function;
end my_package;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 120 of 138

G-7460: Try to define your packaged/standalone function deterministic if appropriate.

REASON

A deterministic function (always return same result for identical parameters) which is defined to be deterministic will be
executed once per different parameter within a SQL statement whereas if the function is not defined to be deterministic it
is executed once per result row.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency

1
2
3
4
5

create or replace package department_api is
 function name_by_id (in_department_id in departments.department_id%type)
 return departments.department_name%type;
end department_api;
/

1
2
3
4
5

create or replace package department_api is
 function name_by_id (in_department_id in departments.department_id%type)
 return departments.department_name%type deterministic;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 121 of 138

Oracle Supplied Packages

G-7510: Always prefix ORACLE supplied packages with owner schema name.

REASON

The signature of oracle-supplied packages is well known and therefore it is quite easy to provide packages with the same
name as those from oracle doing something completely different without you noticing it.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Security

1
2
3
4
5
6

declare
 k_hello_world constant string(11 char) := 'Hello World';
begin
 dbms_output.put_line(k_hello_world);
end;
/

1
2
3
4
5
6

declare
 k_hello_world constant string(11 char) := 'Hello World';
begin
 sys.dbms_output.put_line(k_hello_world);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 122 of 138

Object Types

There are no object type-specific recommendations to be defined at the time of writing.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 123 of 138

Triggers

G-7710: Avoid cascading triggers.

REASON

Having triggers that act on other tables in a way that causes triggers on that table to fire lead to obscure behavior.

Note that the example below is an anti-pattern as Flashback Data Archive should be used for row history instead of history
tables.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Note: Again, don't use triggers to maintain history, use Flashback Data Archive instead.

Major

Maintainability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

create or replace trigger dept_br_u
before update on department for each row
begin
 insert into department_hist (department_id
 ,department_name
 ,manager_id
 ,location_id
 ,modification_date)
 values (:old.department_id
 ,:old.department_name
 ,:old.manager_id
 ,:old.location_id
 ,sysdate);
end;
/
create or replace trigger dept_hist_br_i
before insert on department_hist for each row
begin
 insert into department_log (department_id
 ,department_name
 ,modification_date)
 values (:new.department_id
 ,:new.department_name
 ,sysdate);
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 124 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

create or replace trigger dept_br_u
before update on department for each row
begin
 insert into department_hist (department_id
 ,department_name
 ,manager_id
 ,location_id
 ,modification_date)
 values (:old.department_id
 ,:old.department_name
 ,:old.manager_id
 ,:old.location_id
 ,sysdate);

 insert into department_log (department_id
 ,department_name
 ,modification_date)
 values (:old.department_id
 ,:old.department_name
 ,sysdate);

end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 125 of 138

G-7720: Avoid triggers for business logic

REASON

When business logic is part of a trigger, it becomes obfuscated. In general, maintainers don't look for code in a trigger.
More importantly, if the code on the trigger does SQL or worse PL/SQL access, this becomes a context switch or even a
nested loop that could significantly affect performance.

Minor

Efficiency, Maintainability

PL/SQL & SQL Coding Guidelines Version 1.0 Page 126 of 138

G-7730: If using triggers, use compound triggers

REASON

A single trigger is better than several

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency, Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace trigger dept_i_trg
before insert
on dept
for each row
begin
 :new.id = dept_seq.nextval;
 :new.created_on := sysdate;
 :new.created_by := sys_context('userenv','session_user');
end;
/
create or replace trigger dept_u_trg
before update
on dept
for each row
begin
 :new.updated_on := sysdate;
 :new.updated_by := sys_context('userenv','session_user');
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace trigger dept_ui_trg
before insert or update
on dept
for each row
begin
 if inserting then
 :new.id = dept_seq.nextval;
 :new.created_on := sysdate;
 :new.created_by := sys_context('userenv','session_user');
 elsif updating then
 :new.updated_on := sysdate;
 :new.updated_by := sys_context('userenv','session_user');
 end if;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 127 of 138

Sequences

G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).

REASON

Since ORACLE 11g it is no longer needed to use a SELECT statement to read a sequence (which would imply a context
switch).

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency, Maintainability

1
2
3
4
5
6
7
8

declare
 l_sequence_number employees.emloyee_id%type;
begin
 select employees_seq.nextval
 into l_sequence_number
 from dual;
end;
/

1
2
3
4
5
6

declare
 l_sequence_number employees.emloyee_id%type;
begin
 l_sequence_number := employees_seq.nextval;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 128 of 138

Patterns

Checking the Number of Rows

G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.

REASON

If you do a select count(*), all rows will be read according to the where clause even if only the availability of data is of
interest. This could have a big performance impact.

If we do a select count(*) where rownum = 1 there is also some overhead as there are two context switches between the
PL/SQL and SQL engines.

See the following example for a better solution.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

declare
 l_count pls_integer;
 k_zero constant simple_integer := 0;
 k_salary constant employee.salary%type := 5000;
begin
 select count(*)
 into l_count
 from employee
 where salary < k_salary;
 if l_count > k_zero then
 <<emp_loop>>
 for r_emp in (select employee_id
 from employee)
 loop
 if r_emp.salary < k_salary then
 my_package.my_proc(in_employee_id => r_emp.employee_id);
 end if;
 end loop emp_loop;
 end if;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

declare
 k_salary constant employee.salary%type := 5000;
begin
 <<emp_loop>>
 for r_emp in (select e1.employee_id
 from employee e1
 where exists(select e2.salary
 from employee e2
 where e2.salary < k_salary))
 loop
 my_package.my_proc(in_employee_id => r_emp.employee_id);
 end loop emp_loop;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 129 of 138

G-8120: Never check existence of a row to decide whether to create it or not.

REASON

The result of an existence check is a snapshot of the current situation. You never know whether in the time between the
check and the (insert) action someone else has decided to create a row with the values you checked. Therefore, you
should only rely on constraints when it comes to preventioin of duplicate records.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Efficiency, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

create or replace package body department_api is
 procedure ins (in_r_department in department%rowtype) is
 l_count pls_integer;
 begin
 select count(*)
 into l_count
 from department
 where department_id = in_r_department.department_id;

 if l_count = 0 then
 insert into department
 values in_r_department;
 end if;
 end ins;
end department_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

create or replace package body department_api is
 procedure ins (in_r_department in department%rowtype) is
 begin
 insert into department
 values in_r_department;
 exception
 when dup_val_on_index then null; -- handle exception
 end ins;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 130 of 138

Access objects of foreign application schemas

G-8210: Always use synonyms when accessing objects of another application schema.

REASON

If a connection is needed to a table that is placed in a foreign schema, using synonyms is a good choice. If there are
structural changes to that table (e.g. the table name changes or the table changes into another schema) only the synonym
has to be changed no changes to the package are needed (single point of change). If you only have read access for a table
inside another schema, or there is another reason that does not allow you to change data in this table, you can switch the
synonym to a table in your own schema. This is also good practice for testers working on test systems.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Major

Changeability, Maintainability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

declare
 l_product_name oe.product.product_name%type;
 k_price constant oe.product.list_price%type := 1000;
begin
 select product_name
 into l_product_name
 from oe.product
 where list_price > k_price;
exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
end;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

create synonym oe_product for oe.product;

declare
 l_product_name oe_product.product_name%type;
 k_price constant oe_product.list_price%type := 1000;
begin
 select product_name
 into l_product_name
 from oe_product
 where list_price > k_price;
exception
 when no_data_found then
 null; -- handle_no_data_found;
 when too_many_rows then
 null; -- handle_too_many_rows;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 131 of 138

Validating input parameter size

G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration
section of program unit.

REASON

This technique raises an error (value_error) which may not be handled in the called program unit. This is the right way to
do it, as the error is not within this unit but when calling it, so the caller should handle the error.

EXAMPLE (BAD)

EXAMPLE (GOOD)

FUNCTION CALL

Minor

Maintainability, Reliability, Reusability, Testability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

create or replace package body department_api is
 function dept_by_name (in_dept_name in department.department_name%type)
 return department%rowtype is
 l_return department%rowtype;
 begin
 if in_dept_name is null
 or length(in_dept_name) > 20
 then
 raise err.e_param_to_large;
 end if;
 -- get the department by name
 select *
 from department
 where department_name = in_dept_name;

 return l_return;
 end dept_by_name;
end department_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body department_api is
 function dept_by_name (in_dept_name in department.department_name%type)
 return department%rowtype is
 l_dept_name department.department_name%type not null := in_dept_name;
 l_return department%rowtype;
 begin
 -- get the department by name
 select *
 from department
 where department_name = l_dept_name;

 return l_return;
 end dept_by_name;
end department_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 132 of 138

1
2
3
4
5

...
 r_deparment := department_api.dept_by_name('Far to long name of a department');
...
exception
 when value_error then ...

PL/SQL & SQL Coding Guidelines Version 1.0 Page 133 of 138

Ensure single execution at a time of a program unit

G-8410: Always use application locks to ensure a program unit is only running once at a given time.

REASON

This technique allows us to have locks across transactions as well as a proven way to clean up at the end of the session.

The alternative using a table where a “Lock-Row” is stored has the disadvantage that in case of an error a proper cleanup
has to be done to “unlock” the program unit.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

/* bad example */
create or replace package body lock_up is
 -- manage locks in a dedicated table created as follows:
 -- create table app_locks (
 -- lock_name varchar2(128 char) not null primary key
 --);

 procedure request_lock (in_lock_name in varchar2) is
 begin
 -- raises dup_val_on_index
 insert into app_locks (lock_name) values (in_lock_name);
 end request_lock;

 procedure release_lock(in_lock_name in varchar2) is
 begin
 delete from app_locks where lock_name = in_lock_name;
 end release_lock;
end lock_up;
/

/* call bad example */
declare
 k_lock_name constant varchar2(30 char) := 'APPLICATION_LOCK';
begin
 lock_up.request_lock(in_lock_name => k_lock_name);
 -- processing
 lock_up.release_lock(in_lock_handle => l_handle);
exception
 when others then
 -- log error
 lock_up.release_lock(in_lock_handle => l_handle);
 raise;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 134 of 138

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

/* good example */
create or replace package body lock_up is
 function request_lock(
 in_lock_name in varchar2,
 in_release_on_commit in boolean := false)
 return varchar2 is
 l_lock_handle varchar2(128 char);
 begin
 sys.dbms_lock.allocate_unique(
 lockname => in_lock_name,
 lockhandle => l_lock_handle,
 expiration_secs => constants.k_one_week
);
 if sys.dbms_lock.request(
 lockhandle => l_lock_handle,
 lockmode => sys.dbms_lock.x_mode,
 timeout => sys.dbms_lock.maxwait,
 release_on_commit => coalesce(in_release_on_commit, false)
) > 0
 then
 raise errors.e_lock_request_failed;
 end if;
 return l_lock_handle;
 end request_lock;

 procedure release_lock(in_lock_handle in varchar2) is
 begin
 if sys.dbms_lock.release(lockhandle => in_lock_handle) > 0 then
 raise errors.e_lock_request_failed;
 end if;
 end release_lock;
end lock_up;
/

/* Call good example */
declare
 l_handle varchar2(128 char);
 k_lock_name constant varchar2(30 char) := 'APPLICATION_LOCK';
begin
 l_handle := lock_up.request_lock(in_lock_name => k_lock_name);
 -- processing
 lock_up.release_lock(in_lock_handle => l_handle);
exception
 when others then
 -- log error
 lock_up.release_lock(in_lock_handle => l_handle);
 raise;
end;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 135 of 138

Use dbms_application_info package to follow progress of a process

G-8510: Always use dbms_application_info to track program process transiently.

REASON

This technique allows us to view progress of a process without having to persistently write log data in either a table or a
file. The information is accessible through the v$session view.

EXAMPLE (BAD)

EXAMPLE (GOOD)

Minor

Efficiency, Reliability

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

create or replace package body employee_api is
 procedure process_emps is
 begin
 <<employees>>
 for emp_rec in (select employee_id
 from employee
 order by employee_id)
 loop
 null; -- some processing
 end loop employees;
 end process_emps;
end employee_api;
/

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

create or replace package body employee_api is
 procedure process_emps is
 begin
 sys.dbms_application_info.set_module(module_name => $$plsql_unit
 ,action_name => 'init');
 <<employees>>
 for emp_rec in (select employee_id
 from employee
 order by employee_id)
 loop
 sys.dbms_application_info.set_action('processing ' || emp_rec.employee_id);
 end loop employees;
 end process_emps;
end employee_api;
/

PL/SQL & SQL Coding Guidelines Version 1.0 Page 136 of 138

Code Reviews

Code reviews check the results of software engineering. According to IEEE-Norm 729, a review is a more or less planned
and structured analysis and evaluation process. Here we distinguish between code review and architect review.

To perform a code review means that after or during the development one or more reviewer proof-reads the code to find
potential errors, potential areas for simplification, or test cases. A code review is a very good opportunity to save costs by
fixing issues before the testing phase.

What can a code-review be good for?

Code quality

Code clarity and maintainability

Quality of the overall architecture

Quality of the documentation

Quality of the interface specification

For an effective review, the following factors must be considered:

Definition of clear goals.

Choice of a suitable person with constructive critical faculties.

Psychological aspects.

Selection of the right review techniques.

Support of the review process from the management.

Existence of a culture of learning and process optimization.

Requirements for the reviewer:

The reviewer must not be the owner of the code.

Code reviews may be unpleasant for the developer, as he or she could fear that code will be criticized. If the critic is
not considerate, the code writer will build up rejection and resistance against code reviews.

Precheck

Developers should complete the following checklist prior to requesting a peer code review.

Can I answer "Yes" to each of these questions?

Did I take time to think about what I wanted to do before doing it?

Would I pay for this?

Can I defend my work / decisions I made?

NO sloppiness.

Code is well formatted.

Code is not duplicated in multiple places.

Named variables.

Tables have foreign keys (and associated indexes)...

Run the APEX Advisor (if using APEX).

PL/SQL & SQL Coding Guidelines Version 1.0 Page 137 of 138

Code is well commented.

Package specs includes a description of what the procedure does and what the input variables represent.

Package body includes comments throughout the code to indicate what is happening.

The application includes end user help.

PL/SQL & SQL Coding Guidelines Version 1.0 Page 138 of 138

	Table of Contents
	Introduction to the Insum PL/SQL and SQL Coding Guidelines
	Why are standards important
	License
	Trademarks
	Disclaimer

	Revision History

	Document Conventions
	Scope
	SQALE
	SQALE characteristics and subcharacteristics
	Severity of the rule
	Keywords used

	General Guidelines
	Naming Conventions for PL/SQL
	Database Object Naming Conventions
	Collection Type
	Column
	DML / Instead of Trigger
	Foreign Key Constraint
	Function
	Index
	Object Type
	Package
	Primary Key Constraint
	Procedure
	Sequence
	Synonym
	System Trigger
	Table
	Surrogate Key Columns
	Temporary Table (Global Temporary Table)
	Unique Key Constraint
	View

	Coding Style
	General Style
	Formatting
	Rules
	Example
	Package Version Function
	PACKAGE SPEC
	PACKAGE BODY

	Comments Style
	Commenting Goals
	The JavaDoc Template
	Commenting Tags
	Generated Documentation
	Commenting Conventions
	Code Instrumentation

	Language Usage
	General
	G-1010: Try to label your sub blocks.
	Reason
	Example (bad)
	Example (good)

	G-1020: Have a matching loop or block label.
	Reason
	Example (bad)
	Example (good)

	G-1030: Avoid defining variables that are not used.
	Reason
	Example (bad)
	Example (good)

	G-1040: Always avoid dead code.
	Reason
	Example (bad)
	Example (good)

	G-1050: Avoid using literals in your code.
	Reason
	Example (bad)
	Example (good)

	G-1060: Avoid storing ROWIDs or UROWIDs in database tables.
	Reason
	Example (bad)
	Example (good)

	G-1070: Avoid nesting comment blocks.
	Reason
	Example (bad)
	Example (good)

	Variables & Types
	General
	G-2110: Try to use anchored declarations for variables, constants and types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2120: Try to have a single location to define your types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2130: Try to use subtypes for constructs used often in your code.
	REASON
	EXAMPLES OF POSSIBLE SUBTYPE DEFINITIONS
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2140: Never initialize variables with NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2150: Never use comparisons with NULL values, use IS [NOT] NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2160: Avoid initializing variables using functions in the declaration section.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2170: Never overload variables.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2180: Never use quoted identifiers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2185: Avoid using overly short names for explicitly or implicitly declared identifiers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2190: Avoid using ROWID or UROWID.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Numeric Data Types
	G-2220: Try to use PLS_INTEGER instead of NUMBER for arithmetic operations with integer values.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2230: Try to use SIMPLE_INTEGER datatype when appropriate.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Character Data Types
	G-2310: Avoid using CHAR data type.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2320: Avoid using VARCHAR data type.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2330: Never use zero-length strings to substitute NULL.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-2340: Always define your VARCHAR2 variables using CHAR SEMANTIC (if not defined anchored).
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Boolean Data Types
	G-2410: Try to use boolean data type for values with dual meaning.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	Large Objects
	G-2510: Avoid using the LONG and LONG RAW data types.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	DML & SQL
	General
	G-3110: Always specify the target columns when coding an insert statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3120: Always use table aliases when your SQL statement involves more than one source.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)
	EXAMPLE SUBQUERY (BAD)
	EXAMPLE SUBQUERY (GOOD)

	G-3130: Try to use ANSI SQL-92 join syntax.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3140: Try to use anchored records as targets for your cursors.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3150: Try to use identity columns for surrogate keys.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3160: Avoid visible virtual columns.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3170: Always use DEFAULT ON NULL declarations to assign default values to table columns if you refuse to store NULL values.
	RESTRICTION
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3180: Always specify column names instead of positional references in ORDER BY clauses.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3190: Avoid using NATURAL JOIN.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-3200: Avoid using an ON clause when a USING clause will work.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Bulk Operations
	G-3210: Always use BULK OPERATIONS (BULK COLLECT, FORALL) whenever you have to execute a DML statement for more than 4 times.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Control Structures
	CURSOR
	G-4110: Always use %NOTFOUND instead of NOT %FOUND to check whether a cursor returned data.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4120: Avoid using %NOTFOUND directly after the FETCH when working with BULK OPERATIONS and LIMIT clause.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4130: Always close locally opened cursors.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4140: Avoid executing any statements between a SQL operation and the usage of an implicit cursor attribute.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	CASE / IF / DECODE / NVL / NVL2 / COALESCE
	G-4210: Try to use CASE rather than an IF statement with multiple ELSIF paths.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4220: Try to use CASE rather than DECODE.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4230: Always use a COALESCE instead of a NVL command, if parameter 2 of the NVL function is a function call or a SELECT statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4240: Always use a CASE instead of a NVL2 command if parameter 2 or 3 of NVL2 is either a function call or a SELECT statement.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Flow Control
	G-4310: Never use GOTO statements in your code.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4320: Always label your loops.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4330: Always use a CURSOR FOR loop to process the complete cursor results unless you are using bulk operations.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4340: Always use a NUMERIC FOR loop to process a dense array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4350: Always use 1 as lower and COUNT() as upper bound when looping through a dense array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-4360: Always use a WHILE loop to process a loose array.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4370: Avoid using EXIT to stop loop processing unless you are in a basic loop.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4375: Always use EXIT WHEN instead of an IF statement to exit from a loop.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4380 Try to label your EXIT WHEN statements.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4385: Never use a cursor for loop to check whether a cursor returns data.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4390: Avoid use of unreferenced FOR loop indexes.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-4395: Avoid hard-coded upper or lower bound values with FOR loops.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Exception Handling
	G-5010: Always use an error/logging framework for your application.
	Reason
	Example (bad)
	Example (good)

	G-5020: Never handle unnamed exceptions using the error number.
	Reason
	Example (bad)
	Example (good)

	G-5030: Never assign predefined exception names to user defined exceptions.
	Reason
	Example (bad)
	Example (good)

	G-5040: Avoid use of WHEN OTHERS clause in an exception section without any other specific handlers.
	Reason
	Example (bad)
	Example (good)

	G-5050: Avoid use of the RAISE_APPLICATION_ERROR built-in procedure with a hard-coded 20nnn error number or hard-coded message.
	Reason
	Example (bad)
	Example (good)

	G-5060: Avoid unhandled exceptions.
	Reason
	Example (bad)
	Example (good)

	G-5070: Avoid using Oracle predefined exceptions.
	Reason
	Example (bad)
	Example (good)

	Dynamic SQL
	G-6010: Always use a character variable to execute dynamic SQL.
	Reason
	Example (bad)
	Example (good)

	G-6020: Try to use output bind arguments in the RETURNING INTO clause of dynamic DML statements rather than the USING clause.
	Reason
	Example (bad)
	Example (good)

	Stored Objects
	General
	G-7110: Try to use named notation when calling program units.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7120 Always add the name of the program unit to its end keyword.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7130: Always use parameters or pull in definitions rather than referencing external variables in a local program unit.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7140: Always ensure that locally defined procedures or functions are referenced.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7150: Try to remove unused parameters.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Packages
	G-7210: Try to keep your packages small. Include only few procedures and functions that are used in the same context.
	REASON

	G-7220: Always use forward declaration for private functions and procedures.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7230: Avoid declaring global variables public.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7240: Avoid using an IN OUT parameter as IN or OUT only.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7250: Always use NOCOPY when appropriate
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Procedures
	G-7310: Avoid standalone procedures – put your procedures in packages.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7320: Avoid using RETURN statements in a PROCEDURE.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Functions
	G-7410: Avoid standalone functions – put your functions in packages.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7420: Always make the RETURN statement the last statement of your function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7430: Try to use no more than one RETURN statement within a function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (BETTER)
	EXAMPLE (GOOD)

	G-7440: Never use OUT parameters to return values from a function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7450: Never return a NULL value from a BOOLEAN function.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7460: Try to define your packaged/standalone function deterministic if appropriate.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Oracle Supplied Packages
	G-7510: Always prefix ORACLE supplied packages with owner schema name.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Object Types
	Triggers
	G-7710: Avoid cascading triggers.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-7720: Avoid triggers for business logic
	REASON

	G-7730: If using triggers, use compound triggers
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Sequences
	G-7810: Never use SQL inside PL/SQL to read sequence numbers (or SYSDATE).
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Patterns
	Checking the Number of Rows
	G-8110: Never use SELECT COUNT(*) if you are only interested in the existence of a row.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	G-8120: Never check existence of a row to decide whether to create it or not.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Access objects of foreign application schemas
	G-8210: Always use synonyms when accessing objects of another application schema.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Validating input parameter size
	G-8310: Always validate input parameter size by assigning the parameter to a size limited variable in the declaration section of program unit.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)
	FUNCTION CALL

	Ensure single execution at a time of a program unit
	G-8410: Always use application locks to ensure a program unit is only running once at a given time.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Use dbms_application_info package to follow progress of a process
	G-8510: Always use dbms_application_info to track program process transiently.
	REASON
	EXAMPLE (BAD)
	EXAMPLE (GOOD)

	Code Reviews

